Report to:

RARE EARTH METALS INC.



Resource Estimate and Technical Report for the Two Tom REE Deposit of the Red Wine Complex Labrador, Canada

Document No. 1192410100-REP-R0001-01



Report to:

RARE EARTH METALS INC.



## RESOURCE ESTIMATE AND TECHNICAL REPORT FOR THE TWO TOM REE DEPOSIT OF THE RED WINE COMPLEX, LABRADOR, CANADA

EFFECTIVE DATE: JANUARY 20, 2012

Prepared by Paul Daigle, P.Geo.

Pd/vc



Suite 900, 330 Bay Street, Toronto, Ontario M5H 2S8 Phone: 416-368-9080 Fax: 416-368-1963 Report to:

RARE EARTH METALS INC.



## RESOURCE ESTIMATE AND TECHNICAL REPORT FOR THE TWO TOM REE DEPOSIT OF THE RED WINE COMPLEX, LABRADOR, CANADA

#### EFFECTIVE DATE: JANUARY 20, 2012

| Prepared by   | "Original document<br>signed and sealed by<br>Paul Daigle, P.Geo."        | Date | January 20, 2012 |
|---------------|---------------------------------------------------------------------------|------|------------------|
|               | Paul Daigle, P.Geo.                                                       |      |                  |
| Reviewed by   | "Original document<br>signed and sealed by<br>Jeff Wilson, Ph.D., P.Geo." | Date | January 20, 2012 |
|               | Jen Wilson, Fn.D., F.Geo.                                                 |      |                  |
| Authorized by | "Original document<br>signed and sealed by<br>Paul Daigle, P.Geo."        | Date | January 20, 2012 |
|               | Paul Daigle, P.Geo.                                                       |      |                  |

PD/vc



Suite 900, 330 Bay Street, Toronto, Ontario M5H 2S8 Phone: 416-368-9080 Fax: 416-368-1963





## **REVISION HISTORY**

| REV.<br>NO | ISSUE DATE | PREPARED BY<br>AND DATE | REVIEWED BY<br>AND DATE | APPROVED BY<br>AND DATE | DESCRIPTION OF REVISION |
|------------|------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 00         | 2012/01/17 | P. Daigle               | J. Wilson               | P. Daigle               | Draft to Client         |
| 01         | 2012/01/20 | P. Daigle               | J. Wilson               | P. Daigle               | Final Report            |
|            |            |                         |                         |                         |                         |
|            |            |                         |                         |                         |                         |
|            |            |                         |                         |                         |                         |





## TABLE OF CONTENTS

| 1.0 | SUMM  | IARY                                                                              | 1      |
|-----|-------|-----------------------------------------------------------------------------------|--------|
|     | 1.1   | PROPERTY DESCRIPTION                                                              | 1      |
|     | 1.2   | GEOLOGY                                                                           | 2      |
|     | 1.3   | Exploration                                                                       | 2      |
|     | 1.4   | Conclusions                                                                       | 2      |
|     | 1.5   | RECOMMENDATIONS                                                                   | 3      |
| 2.0 | INTRO | DDUCTION                                                                          | 5      |
|     | 2.1   | TERMS OF REFERENCE AND PURPOSE OF REPORT         2.1.1       UNITS OF MEASUREMENT | 5<br>5 |
|     | 2.2   | INFORMATION AND DATA SOURCES                                                      | 5      |
|     | 2.3   | AGREEMENTS AND OPTIONS                                                            | 6      |
|     | 2.4   | TETRA TECH QP SITE VISIT                                                          | 6      |
| 3.0 | RELIA | ANCE ON OTHER EXPERTS                                                             | 7      |
| 4.0 | PROP  | ERTY DESCRIPTION AND LOCATION                                                     | 8      |
|     | 4.1   | LOCATION                                                                          | 8      |
|     | 4.2   | PROPERTY DESCRIPTION1                                                             | 2      |
|     | 4.3   | Option Agreements1                                                                | 4      |
|     | 4.4   | ENVIRONMENTAL AND SURFACE RIGHTS1                                                 | 4      |
| 5.0 | ACCE  | SSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND                           |        |
|     | PHYS  | IOGRAPHY1                                                                         | 5      |
|     | 5.1   | ACCESSIBILITY1                                                                    | 5      |
|     | 5.2   | Сымате1                                                                           | 5      |
|     | 5.3   | Local Resources1                                                                  | 5      |
|     | 5.4   | INFRASTRUCTURE                                                                    | 6      |
|     | 5.5   | Physiography1                                                                     | 6      |
| 6.0 | HISTO | )RY1                                                                              | 7      |
| 7.0 | GEOL  | OGICAL SETTING AND MINERALIZATION1                                                | 8      |
|     | 7.1   | REGIONAL GEOLOGY1                                                                 | 8      |
|     | 7.2   | LOCAL GEOLOGY1                                                                    | 8      |
|     | 7.3   | PROPERTY GEOLOGY1                                                                 | 8      |
|     |       | 7.3.1 TWO TOM SOUTH                                                               | 1      |
|     | 7 /   | 7.3.2 TWO TOM NORTH                                                               | 2      |
|     | 1.4   | VIINERALIZATION                                                                   | 3      |
| 8.0 | DEPO  | SIT TYPES                                                                         | 6      |





| 9.0  | EXPL  | ORATION                                                   | 27 |
|------|-------|-----------------------------------------------------------|----|
|      | 9.1   | 2010 AIRBORNE MAGNETIC GRADIOMETER AND RADIOMETRIC SURVEY | 27 |
|      | 9.2   | 2010 Exploration Program                                  | 27 |
| 10.0 | DRILI | LING                                                      |    |
|      | 10.1  | 2010 Drilling Program                                     |    |
|      | 10.2  | 2011 Drill Program                                        |    |
|      | 10.3  | Drilling Procedures                                       |    |
| 11.0 | SAMF  | PLE PREPARATION, ANALYSES, AND SECURITY                   |    |
|      | 11.1  | 2010 PROSPECTING                                          |    |
|      | 11.2  | 2010 and 2011 Drilling                                    |    |
| 12.0 | DATA  | VERIFICATION                                              |    |
|      | 12.1  | DATABASE VERIFICATION                                     |    |
| 13.0 | MINF  | RAL PROCESSING AND METALLURGICAL TESTING                  | 43 |
| 10.0 |       | 13.1.1 MODAL MINERALOGY                                   |    |
|      |       | 13.1.2 Elemental Deportment                               |    |
|      |       | 13.1.3 LIBERATION AND ASSOCIATION                         |    |
|      |       | 13.1.4 MINERAL RELEASE                                    |    |
|      |       | 13.1.5 GRADE RECOVERY                                     |    |
| 14.0 | MINE  | RAL RESOURCE ESTIMATES                                    |    |
|      |       | 14.1.1 DATABASE                                           |    |
|      | 14.2  | Γ4.Τ.2 ΟΓΕΟΙΤΟ ΟΚΑΝΤΤΙ                                    | 40 |
|      | 11.2  | 14.2.1 Raw Assays                                         |    |
|      |       | 14.2.2 Capping                                            |    |
|      |       | 14.2.3 COMPOSITES                                         | 55 |
|      | 14.3  | GEOLOGICAL INTERPRETATION                                 | 56 |
|      | 14.4  | BLOCK MODEL                                               |    |
|      |       | 14.4.1 VARIOGRAPHY                                        |    |
|      |       | 14.4.3 INTERPOLATION PLAN AND SPATIAL ANALYSIS            |    |
|      | 14.5  | MINERAL RESOURCE ESTIMATE                                 |    |
|      |       | 14.5.1 MINERAL RESOURCE CLASSIFICATION                    | 73 |
|      | 14.6  | VALIDATION                                                | 77 |
|      |       | 14.6.1 MODEL VOLUME VALIDATION                            | 77 |
|      |       | 14.6.2 INTERPOLATION VALIDATION                           |    |
| 15.0 |       |                                                           | 80 |
| 14.0 |       |                                                           |    |
| 10.0 |       |                                                           | ŏI |
| 17.0 | INTE  | RPRETATION AND CONCLUSIONS                                |    |
| 18.0 | RECC  | DMMENDATIONS                                              |    |





| 19.0 | REFERENCES                      | 7 |
|------|---------------------------------|---|
| 20.0 | CERTIFICATE OF QUALIFIED PERSON | 0 |

## APPENDICES

- Appendix A Mineral Licences
- Appendix B Raw Data Statistics
- Appendix C Histograms
- Appendix D Capped Data Statistics
- Appendix E 3 m Composite Statistics
- Appendix F Variograms

## LIST OF TABLES

| Estimated Cost Breakdown for Proposed Drill Program                                                     | 3                                                                                                         |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Inferred Resource Estimate for the Two Tom Deposit                                                      | 4                                                                                                         |
| Inferred Resource Estimate for the Two Tom Deposit by REOs                                              | 4                                                                                                         |
| Summary of the Two Tom Property                                                                         | 12                                                                                                        |
| Summary of Exploration Activities, 1967-1987                                                            | 17                                                                                                        |
| List of REEs, REOs and Metal Oxides Associated with Rare Earth Metal                                    |                                                                                                           |
| Mineralization                                                                                          | 25                                                                                                        |
| Summary of Two Tom Trenches                                                                             | 28                                                                                                        |
| Summary of 2010 Two Tom Prospecting Samples                                                             | 28                                                                                                        |
| Summary of the 2010 Two Tom Drill Program                                                               | 30                                                                                                        |
| Summary of Select Mineralized Intersections from the 2010 Drill Program                                 | 30                                                                                                        |
| Summary of Drillholes for 2011 Two Tom Drilling Program                                                 | 31                                                                                                        |
| Summary of Select Mineralized Intersections from 2011 Drill Program                                     | 32                                                                                                        |
| REE Assay Package Major Elements (Actlabs Code 8)                                                       | 36                                                                                                        |
| Whole Rock Analysis (Actlabs Code 4B WRA-ICP)                                                           | 37                                                                                                        |
| List of Element to Oxide Conversion Factors                                                             | 39                                                                                                        |
| Summary of Check Samples Collected by Tetra Tech                                                        | 41                                                                                                        |
| Comparison of Assay Results for REEs                                                                    | 42                                                                                                        |
| Raw Assay Statistics (No Zeroes) for TREO% and Metal Oxides                                             | 47                                                                                                        |
| Summary of Raw Assay Statistics for the REOs; All Lithologies                                           | 48                                                                                                        |
| Summary of Raw Assay Statistics for Syenite Porphyry Lithologies; Rock Cod                              | les                                                                                                       |
| 100, 101, 102, 103, 104, 111 and 112                                                                    | 48                                                                                                        |
| Summary of Raw Assay Statistics for Amphibole Gneiss Lithologies; Rock                                  |                                                                                                           |
| Codes 401, 402, and 403                                                                                 | 48                                                                                                        |
| Summary of Capping Levels                                                                               | 54                                                                                                        |
| Comparison of Capped and Uncapped Nb <sub>2</sub> O <sub>5</sub> % and La <sub>2</sub> O <sub>3</sub> % | 55                                                                                                        |
| Statistics on the Assay Sample Lengths of the Raw Data                                                  | 55                                                                                                        |
|                                                                                                         | Estimated Cost Breakdown for Proposed Drill Program<br>Inferred Resource Estimate for the Two Tom Deposit |





| Table 14.8  | Comparison of Capped and Uncapped Nb <sub>2</sub> O <sub>5</sub> % and La <sub>2</sub> O <sub>3</sub> % 3.0 m Composidate | te<br>56 |
|-------------|---------------------------------------------------------------------------------------------------------------------------|----------|
| Table 14.9  | List of Rock Codes and Wireframe Codes                                                                                    | 57       |
| Table 14.10 | Block Coordinates for the Two Tom Block Model                                                                             | 60       |
| Table 14.11 | Variogram Parameter Profiles                                                                                              | 64       |
| Table 14.12 | Variography Parameters LREO% by Domain                                                                                    | 65       |
| Table 14.13 | Variography Parameters for HREO% by Domain                                                                                | 65       |
| Table 14.14 | Variography Parameters for Nb <sub>2</sub> O <sub>5</sub> by Domain                                                       | 66       |
| Table 14.15 | Variography Parameters for ThO <sub>2</sub> by Domain                                                                     | 66       |
| Table 14.16 | Variography Parameters for BeO by Domain                                                                                  | 67       |
| Table 14.17 | Description of Interpolation Passes for Domains 4001 and 4002                                                             | 67       |
| Table 14.18 | Search Ellipse Parameters for Domains 4001 and 4002                                                                       | 68       |
| Table 14.19 | Inferred Resource Estimate for the Two Tom Deposit                                                                        | 74       |
| Table 14.20 | Inferred Resource Estimate for the Two Tom Deposit by REOs                                                                | 74       |
| Table 14.21 | Inferred Resource Estimate for the South Domain (4001) of the Two Tom                                                     |          |
|             | Deposit                                                                                                                   | 75       |
| Table 14.22 | Inferred Resource Estimate for the North Domain (4002) of the Two Tom                                                     |          |
|             | Deposit                                                                                                                   | 75       |
| Table 14.23 | Volume Comparison between Wireframe Solid Models and Block Models                                                         | 77       |
| Table 14.24 | Comparison of OK, ID2 and NN Average Grades                                                                               | 77       |
| Table 17.1  | Inferred Resource Estimate for the Two Tom Deposit                                                                        | 83       |
| Table 17.2  | Inferred Resource Estimate for the Two Tom Deposit by REOs                                                                | 83       |
| Table 18.1  | Estimated Cost Breakdown for Proposed Drill Program                                                                       | 84       |
| Table 18.2  | Summary of Proposed Drillhole Locations                                                                                   | 85       |

## LIST OF FIGURES

| Figure 4.1   | General Property Location Map                                                   | . 9 |
|--------------|---------------------------------------------------------------------------------|-----|
| Figure 4.2   | Property Location Map of the Two Tom Deposit of the Red Wine Project            | 10  |
| Figure 4.3   | REE Mineral Occurrences Map of the Red Wine Complex                             | 11  |
| Figure 4.4   | Two Tom Mineral Claims                                                          | 13  |
| Figure 7.1   | General Property Geology Map (REM, 2011)                                        | 20  |
| Figure 14.1  | Histogram and Cumulative Probability Plots for Nb <sub>2</sub> O <sub>5</sub> % |     |
|              | (Rock Code 100 series)                                                          | 50  |
| Figure 14.2  | Histogram and Cumulative Probability Plots for Nb <sub>2</sub> O <sub>5</sub> % |     |
|              | (Rock Code 400 series)                                                          | 51  |
| Figure 14.3  | Histogram and Cumulative Probability Plot for La <sub>2</sub> O <sub>3</sub> %  |     |
|              | (Rock Code 100 series)                                                          | 52  |
| Figure 14.4  | Histogram and Cumulative Probability Plot for La <sub>2</sub> O <sub>3</sub> %  |     |
|              | (Rock Code 400 series)                                                          | 53  |
| Figure 14.5  | Plan View of Two Tom Wireframes - North and South Domains                       | 58  |
| Figure 14.6  | Perspective View of the Two Tom Deposit; Looking Northeast; North and Sout      | h   |
|              | Domain; No Scale                                                                | 59  |
| Figure 14.7  | Block Model Origin for the Two Tom Block Model                                  | 60  |
| Figure 14.8  | Drillhole Location in the Two Tom Deposit; Plan View                            | 61  |
| Figure 14.9  | Drillhole and Trench Location in the Two Tom Deposit; Plan View                 | 62  |
| Figure 14.10 | Block Model Attributes for the Two Tom Deposit Resource Estimate                | 63  |





| Figure 14.11 | Search Ellipse 4001_P1 and 4001_P2 for the 4001 Domain; Perspective View Looking 060°Az; No Scale    | v<br>69 |
|--------------|------------------------------------------------------------------------------------------------------|---------|
| Figure 14.12 | Search Ellipse 4002_P1 and 4002_P2 for the 4002 Domain; Perspective View Looking Northeast; No Scale | v<br>70 |
| Figure 14.13 | Block Model Plan Section of the 4001 Domain (300 m Elevation) Showing TREO%                          | .71     |
| Figure 14.14 | Block Model Plan Section of the 4001 Domain (300 m Elevation) Showing TREO%                          | 72      |
| Figure 14.15 | Grade-Tonnage Curves Showing Inferred Resources for TREO%                                            | 76      |
| Figure 14.16 | Swath Plots for TREO% by Easting                                                                     | 78      |
| Figure 14.17 | Swath Plots for TREO% by Northing                                                                    | 78      |
| Figure 14.18 | Swath Plots for TREO% by Elevation                                                                   | 79      |
| Figure 18.1  | Locations of Proposed Drillholes; Plan View                                                          | 86      |

## GLOSSARY

#### UNITS OF MEASURE

| Above mean sea level      | amsl               |
|---------------------------|--------------------|
| Acre                      | ac                 |
| Ampere                    | А                  |
| Annum (year)              | а                  |
| Azimuth                   | Az                 |
| Billion                   | В                  |
| Billion tonnes            | Bt                 |
| Billion years ago         | Ga                 |
| British thermal unit      | BTU                |
| Centimetre                | cm                 |
| Counts per second         | cps                |
| Cubic centimetre          | cm <sup>3</sup>    |
| Cubic feet per minute     | cfm                |
| Cubic feet per second     | ft <sup>3</sup> /s |
| Cubic foot                | ft <sup>3</sup>    |
| Cubic inch                | in <sup>3</sup>    |
| Cubic metre               | m³                 |
| Cubic yard                | yd <sup>3</sup>    |
| Coefficients of Variation | CVs                |
| Day                       | d                  |
| Days per week             | d/wk               |
| Days per year (annum)     | d/a                |
| Dead weight tonnes        | DWT                |
| Decibel adjusted          | dBa                |
| Decibel                   | dB                 |
| Degree                    | 0                  |





| Degrees Celsius                       | °C                |
|---------------------------------------|-------------------|
| Diameter                              | ø                 |
| Dollar (American)                     | US\$              |
| Dollar (Canadian)                     | Cdn\$             |
| Dry metric ton                        | dmt               |
| Foot                                  | ft                |
| Gallon                                | gal               |
| Gallons per minute (US)               | gpm               |
| Gigajoule                             | GJ                |
| Gigapascal                            | GPa               |
| Gigawatt                              | GW                |
| Gram                                  | g                 |
| Grams per cubic centimetre            | g/cm <sup>3</sup> |
| Grams per litre                       | g/L               |
| Grams per tonne                       | g/t               |
| Greater than                          | >                 |
| Hectare (10,000 m <sup>2</sup> )      | ha                |
| Hertz                                 | Hz                |
| Horsepower                            | hp                |
| Hour                                  | h                 |
| Hours per day                         | h/d               |
| Hours per week                        | h/wk              |
| Hours per year                        | h/a               |
| Inch                                  | "                 |
| Kilo (thousand)                       | k                 |
| Kilogram                              | kg                |
| Kilograms per cubic metre             | kg/m <sup>3</sup> |
| Kilograms per hour                    | kg/h              |
| Kilograms per square metre            | kg/m <sup>2</sup> |
| Kilometre                             | km                |
| Kilometres per hour                   | km/h              |
| Kilopascal                            | kPa               |
| Kilotonne                             | kt                |
| Kilovolt                              | kV                |
| Kilovolt-ampere                       | kVA               |
| Kilovolts                             | kV                |
| Kilowatt                              | kW                |
| Kilowatt hour                         | kWh               |
| Kilowatt hours per tonne (metric ton) | kWh/t             |
| Kilowatt hours per vear               | kWh/a             |
| Less than                             | <                 |
| Litre                                 | L                 |
| Litres per minute                     | L/m               |
| Megabytes per second                  | Mb/s              |
| Megapascal                            | MPa               |
| Megavolt-ampere                       | MVA               |
| ✓ ·                                   |                   |





| Megawatt                            | MW                       |
|-------------------------------------|--------------------------|
| Metre                               | m                        |
| Metres above sea level              | mASL                     |
| Metres Baltic sea level             | mbsl                     |
| Metres per minute                   | m/min                    |
| Metres per second                   | m/s                      |
| Metric ton (tonne)                  | t                        |
| Microns                             | μm                       |
| Milligram                           | mg                       |
| Milligrams per litre                | mg/L                     |
| Millilitre                          | mL                       |
| Millimetre                          | mm                       |
| Million                             | М                        |
| Million bank cubic metres           | Mbm <sup>3</sup>         |
| Million bank cubic metres per annum | Mbm <sup>3</sup> /a      |
| Million tonnes                      | Mt                       |
| Minute (plane angle)                | •                        |
| Minute (time)                       | min                      |
| Month                               | mo                       |
| Ounce                               | oz                       |
| Pascal                              | Ра                       |
| Centipoise                          | mPa⋅s                    |
| Parts per million                   | ppm                      |
| Parts per billion                   | dqq                      |
| Percent                             | %                        |
| Pound(s)                            | lb                       |
| Pounds per square inch              | psi                      |
| Revolutions per minute              | rpm                      |
| Second (plane angle)                | "                        |
| Second (time)                       | s                        |
| Specific gravity                    | SG                       |
| Square centimetre                   | $cm^2$                   |
| Square foot                         | ft <sup>2</sup>          |
| Square inch                         | in <sup>2</sup>          |
| Square kilometre                    | km <sup>2</sup>          |
| Square metre                        | m <sup>2</sup>           |
| Thousand tonnes                     | kt                       |
| Three Dimensional                   | 30                       |
|                                     | 3DM                      |
|                                     | t                        |
| Tonnes per day                      | t/d                      |
|                                     | t/h                      |
|                                     | t/a                      |
| Tonnes seconds per hour metre cubed | va<br>te/bm <sup>3</sup> |
|                                     | (5/1111<br>\/            |
| Vult                                | V                        |
| VVEEK                               | WK                       |





| Weight/weight  | w/w |
|----------------|-----|
| Wet metric ton | wmt |
| Year (annum)   | а   |

#### Abbreviations and Acronyms

| Activation Laboratories                       | ActLabs   |
|-----------------------------------------------|-----------|
| Aeroquest International Limited               | Aeroquest |
| ALS Canada Ltd                                | ALS       |
| Beryllium oxide                               | BeO       |
| Beryllium                                     | Be        |
| Calcium                                       | Са        |
| Canada Centre for Mineral & Energy Technology | Canmet    |
| Canadian Institute of Mining                  | CIM       |
| Cerium Oxide                                  | $Ce_2O_3$ |
| Cerium                                        | Ce        |
| Dysprosium Oxide                              | $Dy_2O_3$ |
| Dysprosium                                    | Dy        |
| Dysprosium                                    | Dy        |
| Erbium Oxide                                  | $Er_2O_3$ |
| Erbium                                        | Er        |
| Europium Oxide                                | $Eu_2O_3$ |
| Europium                                      | Eu        |
| Gadolinium Oxide                              | $Gd_2O_3$ |
| Gadolinium                                    | Gd        |
| Ground Positioning Satellite                  | GPS       |
| Heavy rare earth oxide                        | HREO      |
| Holmium Oxide                                 | $Ho_2O_3$ |
| Holmium                                       | Но        |
| Inductively Coupled Plasma-Mass Spectrometry  | ICP-MS    |
| Inductively Coupled Plasma-Optical Emission   | ICP-OES   |
| Inverse Distance Squared                      | ID        |
| Landrill International Ltd                    | Landrill  |
| Lanthanum Oxide                               | $La_2O_3$ |
| Lanthanum                                     | La        |
| Light rare earth oxide                        | LREO      |
| Lutetium                                      | Lu        |
| Lutetium Oxide                                | $Lu_2O_3$ |
| Mineral Liberation Analyser                   | MLA       |
| National Instrument 43-101                    | NI 43-101 |
| National Topographic System                   | NTS       |
| Nearest Neighbour                             | NN        |
| Neodymium Oxide                               | $Nd_2O_3$ |
| Neodymium                                     | Nd        |
| Newfoundland and Labrador                     | NL        |
| Niobium Pentoxide                             | $Nb_2O_5$ |





| Niobium                           | Nb                             |
|-----------------------------------|--------------------------------|
| Ordinary kriging                  | OK                             |
| Potassium                         | K                              |
| Praseodymium Oxide                | $Pr_2O_3$                      |
| Praseodymium                      | Pr                             |
| Qualified Person                  | QP                             |
| Quality Assurance/Quality Control | QA/QC                          |
| Quebec                            | QC                             |
| Rare earth element                | REE                            |
| Rare Earth Metals Inc.            | REM                            |
| Rare earth oxide                  | REO                            |
| Samarium Oxide                    | $Sm_2O_3$                      |
| Samarium                          | Sm                             |
| Scanning Electron Microscope      | SEM                            |
| Terbium Oxide                     | $Tb_2O_3$                      |
| Terbium                           | Tb                             |
| Thorianite                        | ThO <sub>2</sub>               |
| Thorium Oxide                     | ThO <sub>2</sub>               |
| Thorium                           | Th                             |
| Thulium Oxide                     | $Tm_2O_3$                      |
| Thulium                           | Tm                             |
| Toronto Venture Stock Exchange    | TSXV                           |
| Total rare earth oxides %         | TREO%                          |
| Two Tom REE Property              | Property                       |
| Universal Helicopters Ltd.        | Universal                      |
| Uranium                           | U                              |
| Wardrop, a Tetra Tech Company     | Tetra Tech                     |
| X-ray Fluorescence                | XRF                            |
| Ytterbium Oxide                   | Yb <sub>2</sub> O <sub>3</sub> |
| Ytterbium                         | Yb                             |
| Yttrium Oxide                     | $Y_2O_3$                       |
| Yttrium                           | Υ                              |
| Zimtu Capital Corp.               | Zimtu                          |
| North American Datum              | NAD                            |





## 1.0 SUMMARY

Wardrop, a Tetra Tech Company (Tetra Tech) was retained by Rare Earth Metals Inc. (REM) to produce the first National Instrument 43-101 (NI 43-101) compliant resource estimate on the Two Tom niobium-beryllium-rare earth element (Nb-Be-REE) Property (the Property), and to provide the accompanying NI 43-101 technical report. This technical report is prepared in accordance with NI 43-101 and Form 43-101F1.

Paul Daigle, P.Geo., Senior Geologist with Tetra Tech, conducted a site visit to the Property on July 19, 2011 for one day. The project site and base camp (core logging, sampling and storage facilities) were inspected during the site visit. Mr. Daigle was accompanied on the site visit by Mr. Glen Penney, Project Geologist for REM.

This technical report and resource estimate is on the Property in the Red Wine Complex Project in central Newfoundland and Labrador (NL), Canada, situated approximately 140 km northeast of Churchill Falls, NL, and 160 km northwest of Happy Valley-Goose Bay, NL.

#### 1.1 PROPERTY DESCRIPTION

The Property is defined by the mineral rights to three contiguous mining licences, consisting of 46 mineral claims in central NL and covers an area of approximately 1,150 ha or 11.5 km<sup>2</sup>. Currently, REM has option agreements for a 100% interest in all three licences.

REM has a 100% interest in the mineral licences that cover and encircle the Two Tom deposit, which is subject to two option agreements. The southeast half of the Two Tom deposit lies within Licence 016277M and is optioned from Roland and Eddie Quinlan, where R. Quinlan holds mineral rights to four mineral claims. The northwest half of the Two Tom deposit lies within Licence 016522M and is optioned from Zimtu Capital Corp. (Zimtu), where D. Lewis, a partner of Zimtu, holds the mineral rights to 12 mineral claims (REM Press Release, November 16, 2011).

Adjacent to the north, south and west, Licence No. 016548M is also subject to the same option agreement with Messrs. R. and E. Quinlan, where REM has a 100% interest. The mineral rights are held by Marilyn Quinlan and consist of 30 mineral claims.





### 1.2 GEOLOGY

The Property is situated within the Central Mineral Belt of Labrador, proximal to the northern margin of the Grenville Structural Province. It is underlain by peralkaline volcanic and porphyritic rocks of the Letitia Lake Group and cogenetic peralkaline and alkaline plutonic rocks of the Arc Lake and Red Wine Intrusive Suites (~1.3 Ga). The Letitia Lake Group and the associated intrusive rocks are bound on the north by terrestrial to shallow marine sedimentary rocks, basaltic flows and gabbro sills of the Seal Lake Group (1.0 to 1.2 Ga) and to the south by granitoid rocks of the Trans-Labrador batholith (1.65 Ga) (Belik 1996).

The Two Tom deposit occurs within a peralkaline syenite pluton that is 2 km in diameter. The southern portion of the pluton is comprised of unmineralized medium grained riebeckite syenite. According to Miller (1988), there is a mineralized syenite outcrop in the northern portion of the pluton, which intrudes the Letitia Lake Group at the lower contact with the Bessie Lake Formation (Miller 1988).

The northwest striking Two Tom deposit has been traced by prospecting, trenching and drilling; and has been interpreted over 1.1 km. The Two Tom deposit is situated within the eastern end of the Red Wine Complex (REM press release: September 18, 2011).

#### 1.3 EXPLORATION

Exploration completed by REM in 2010 and 2011 on the Property includes prospecting, geological mapping, airborne geophysical surveys, trenching (channel sampling, and diamond core drilling.

#### 1.4 CONCLUSIONS

Tetra Tech has estimated a new mineral resource estimate for the Two Tom deposit in accordance with the Canadian Institute of Mining (CIM) Best Practices and disclosed in accordance with NI 43-101. The effective date of the Two Tom mineral resource estimate is December 10, 2011.

The block model and mineral resource for the Two Tom deposit is classified as having Inferred Mineral Resources based on drillhole spacing and sample data populations. The mineral resource estimate for the deposit, at 0.6 total rare earth oxides percentage (TREO%) cut-off, is an Inferred Resource of 41 Mt at 1.18% TREO, 0.26% niobium pentoxide (Nb<sub>2</sub>0<sub>5</sub>), 0.18% beryllium oxide (BeO) and 0.06 thorianite (ThO<sub>2</sub>% with 5% of the TREO being made up of heavy rare earth oxides (HREO)).

The mineral resource was estimated by the ordinary kriging (OK) interpolation method on capped grades for all 15 rare earth oxides (REO) and three associated metal oxides,  $Nb_20_5$ ,  $ThO_2$  and BeO. The TREO% is a sum of the 15 individual





interpolations of the REOs. No recoveries have been applied to the interpolated estimates.

Table 1.2and Table 1.3 summarize the Inferred Resource estimates for the Two Tom REE-Nb-Be deposit at various TREO% cut-offs between 0.5 and 1.4 TREO%.

#### 1.5 Recommendations

Tetra Tech recommends that additional drilling is warranted to further investigate and develop the known Two Tom REE deposit. Additional drilling will determine, with greater confidence, both the continuity of the mineralized lithologies and the continuity of the REE,  $Nb_2O_5$  and BeO grades. The recommended drilling includes step out drilling, either along strike or laterally, and in-fill drilling of the interpreted deposit.

Tetra Tech recommends a proposed drilling program with a minimum of 5,000 m in 19 drillholes. The locations of these drillholes are divided between the north and south domains and are designed to extend the known deposit along strike, to the northwest and southeast, and to better interpret the separation of the two domains. The budget for the proposed drill program is estimated at approximately \$1.3 million.

A summary of the breakdown of costs for the proposed drill program is shown in Table 1.1.

| Description                                | Estimated Cost<br>(Cdn\$) |
|--------------------------------------------|---------------------------|
| Drilling                                   |                           |
| Drilling – Mobilization/Demobilization     | 30,000                    |
| Drilling – \$130/m x 5,000 m               | 650,000                   |
| Helicopter Support \$1,800/h x 120 h       | 216,000                   |
| REM Personnel – Geologists, Geotechnicians | 160,000                   |
| Assaying (including transport)             | 240,000                   |
| Total                                      | 1,296,000                 |

#### Table 1.1 Estimated Cost Breakdown for Proposed Drill Program





|   | TREO%<br>Cut-off | Tonnes<br>('000) | Density | LREO%* | HREO%** | TREO%*** | HREO:TREO<br>Ratio | Nb <sub>2</sub> O <sub>5</sub> % | BeO  | ThO₂% |
|---|------------------|------------------|---------|--------|---------|----------|--------------------|----------------------------------|------|-------|
| ſ | 1.40%            | 13,060           | 2.91    | 1.556  | 0.095   | 1.651    | 6%                 | 0.26                             | 0.22 | 0.06  |
|   | 1.20%            | 18,321           | 2.90    | 1.459  | 0.091   | 1.551    | 6%                 | 0.26                             | 0.21 | 0.06  |
|   | 1.00%            | 24,568           | 2.88    | 1.348  | 0.086   | 1.434    | 6%                 | 0.27                             | 0.21 | 0.06  |
|   | 0.90%            | 28,306           | 2.87    | 1.287  | 0.083   | 1.370    | 6%                 | 0.28                             | 0.20 | 0.06  |
|   | 0.80%            | 32,494           | 2.86    | 1.223  | 0.080   | 1.303    | 6%                 | 0.27                             | 0.20 | 0.06  |
|   | 0.70%            | 36,564           | 2.85    | 1.164  | 0.078   | 1.241    | 6%                 | 0.27                             | 0.19 | 0.06  |
|   | 0.60%            | 40,635           | 2.84    | 1.107  | 0.075   | 1.182    | 6%                 | 0.26                             | 0.18 | 0.06  |
|   | 0.50%            | 44,300           | 2.84    | 1.058  | 0.072   | 1.130    | 6%                 | 0.26                             | 0.18 | 0.06  |

#### Table 1.2 Inferred Resource Estimate for the Two Tom Deposit

Note: \* Light rare earth oxide (LREO) \*\* Includes Y<sub>2</sub>O<sub>3</sub> \*\*\* See Table 1.2

#### Table 1.3 Inferred Resource Estimate for the Two Tom Deposit by REOs

| TREO%   | Tonnes |                                  |                                  |                                  |                                  | <b>.</b>                         |                                  |                                  | <b>T</b> I 0 %                   |                                  |                                  | E 0 %                            | <b>T</b> 0 %                     | X1 0 %                           |                                  |                                 |
|---------|--------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|
| Cut-off | ('000) | La <sub>2</sub> O <sub>3</sub> % | Ce <sub>2</sub> O <sub>3</sub> % | Pr <sub>2</sub> O <sub>3</sub> % | Nd <sub>2</sub> O <sub>3</sub> % | Sm <sub>2</sub> O <sub>3</sub> % | Eu <sub>2</sub> O <sub>3</sub> % | Gd <sub>2</sub> O <sub>3</sub> % | 1b <sub>2</sub> O <sub>3</sub> % | Dy <sub>2</sub> O <sub>3</sub> % | HO <sub>2</sub> O <sub>3</sub> % | Er <sub>2</sub> O <sub>3</sub> % | Im <sub>2</sub> O <sub>3</sub> % | Yb <sub>2</sub> O <sub>3</sub> % | Lu <sub>2</sub> O <sub>3</sub> % | Y <sub>2</sub> O <sub>3</sub> % |
| 1.40%   | 13,060 | 0.419                            | 0.765                            | 0.078                            | 0.254                            | 0.040                            | 0.004                            | 0.025                            | 0.003                            | 0.010                            | 0.001                            | 0.003                            | 0.000                            | 0.001                            | 0.000                            | 0.049                           |
| 1.20%   | 18,321 | 0.392                            | 0.717                            | 0.073                            | 0.240                            | 0.039                            | 0.004                            | 0.023                            | 0.002                            | 0.010                            | 0.001                            | 0.003                            | 0.000                            | 0.001                            | 0.000                            | 0.046                           |
| 1.00%   | 24,568 | 0.358                            | 0.662                            | 0.068                            | 0.224                            | 0.037                            | 0.003                            | 0.022                            | 0.002                            | 0.009                            | 0.001                            | 0.003                            | 0.000                            | 0.001                            | 0.000                            | 0.044                           |
| 0.90%   | 28,306 | 0.340                            | 0.632                            | 0.065                            | 0.215                            | 0.036                            | 0.003                            | 0.022                            | 0.002                            | 0.009                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.042                           |
| 0.80%   | 32,494 | 0.321                            | 0.600                            | 0.062                            | 0.205                            | 0.034                            | 0.003                            | 0.021                            | 0.002                            | 0.009                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.041                           |
| 0.70%   | 36,564 | 0.304                            | 0.572                            | 0.059                            | 0.196                            | 0.033                            | 0.003                            | 0.020                            | 0.002                            | 0.008                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.039                           |
| 0.60%   | 40,635 | 0.288                            | 0.544                            | 0.056                            | 0.188                            | 0.032                            | 0.003                            | 0.019                            | 0.002                            | 0.008                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.038                           |
| 0.50%   | 44,300 | 0.274                            | 0.519                            | 0.054                            | 0.180                            | 0.031                            | 0.003                            | 0.019                            | 0.002                            | 0.008                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.037                           |





## 2.0 INTRODUCTION

REM is a Canadian-based and Canadian-registered resource company, based in Thunder Bay, Ontario, and is publicly listed on the TSX Venture Exchange (TSXV) as RA.V and with the OTC Markets Group Inc. (OTCQX) as RAREF. REM is a junior exploration company focused on REE projects with superior existing infrastructure or excellent potential infrastructure for mine development (Website; www.rareearthmetals.ca).

This technical report and resource estimate is on the Two Tom REE deposit in the Red Wine Complex Project in central NL, Canada, situated approximately 140 km northeast of Churchill Falls, NL, and 160 km northwest of Happy Valley-Goose Bay, NL.

#### 2.1 TERMS OF REFERENCE AND PURPOSE OF REPORT

Tetra Tech was retained by REM to produce the first NI 43-101 compliant resource estimate on the Property and to provide the accompanying NI 43-101 technical report. This technical report conforms to the standards set out in NI 43-101 Standards and Disclosure for Mineral Projects and is in compliance with Form 43-101F1.

The objective of this study is to:

- produce an NI 43-101 resource estimate and technical report on the project, including a summary of land tenures, exploration history, trenching, geophysics, and drilling
- provide recommendations and a budget for additional work on the project.

The Qualified Person (QP) responsible for this report is Paul Daigle, P.Geo., and Senior Geologist for Tetra Tech.

2.1.1 UNITS OF MEASUREMENT

All units of measurement used in this technical report and resource estimate are in metric, unless otherwise stated.

2.2 INFORMATION AND DATA SOURCES

The main source of information in preparing this report is listed below. A complete list of references is provided in Section 19.0 of this report.





 Gebru, A., Penney, G., and Nielsen, P. 2011. Assessment Report of Diamond Drilling Activities on Mineral Licenses of the Red Wine Project, Letitia – Shallow Lake – Bessie Lake Areas, Labrador, pp. 55.

#### 2.3 AGREEMENTS AND OPTIONS

REM has a 100% interest in the Two Tom property, which is subject to two option agreements. The southeast half of the occurrence is optioned from the individuals, Roland and Eddie Quinlan; and the northwest half of the zone is optioned from Zimtu (November 16, 201; press release).

2.4 TETRA TECH QP SITE VISIT

Paul Daigle, P.Geo., Senior Geologist with Tetra Tech, conducted a site visit to the Property on July 19, 2011 for one day. The project site and base camp, including the core logging, sampling and storage facilities, were inspected during the site visit. Mr. Daigle was accompanied on the site visit by Mr. Glen Penney, Project Geologist for REM.



## 3.0 RELIANCE ON OTHER EXPERTS

In preparation of this report, Tetra Tech has relied upon REM and others for information and for matters relating to property ownership, property titles, and environmental issues. The majority of the information has been sourced from REM internal reports, company press releases.

Tetra Tech is relying on reports, opinions, and statements from experts who are not QPs for information regarding legal, environmental, political, or other issues and factors relevant to the technical report. Neither Tetra Tech nor the Author are qualified to provide extensive comment on legal issues, including status tenure associated with the Two Tom project, and ownership is provided for general purposes only. Assessment of these aspects had relied on information provided by REM, which has not been independently verified by Tetra Tech.

Information from third party sources is referenced in Section 19.0. Tetra Tech used information from these sources under the assumption that the contents are accurate. Tetra Tech has not conducted an examination of land titles or mineral rights for the Property.

7



# 4.0 PROPERTY DESCRIPTION AND LOCATION

The Property is defined by the mineral rights to three contiguous mining licences, covering 16 mineral claims in central NL and covers an area of approximately 1,150 ha or 11.5 km<sup>2</sup>. Currently, REM has option agreements for a 100% interest in all three licences.

#### 4.1 LOCATION

The Two Tom Property is located:

- within National Topographic System (NTS) map sheets 13L/01, 13L/02, 13L/08
- at approximately 555800E and 6007800N (Zone 20, North American Datum (NAD) 27) in central Labrador, Canada
- approximately 160 km northwest of Happy Valley-Goose Bay, Labrador
- approximately 140 km northeast of Churchill Falls
- approximately 60 km east of the Smallwood Reservoir
- approximately 50 km northeast of the Orma Lake Road
- approximately 4 km south of Bessie Lake
- approximately 3 km southeast of Letitia Lake
- within the north eastern portion of the Red Wine Complex

The Property is situated as shown in Figure 4.1, Figure 4.2, and Figure 4.3.















#### Figure 4.2 Property Location Map of the Two Tom Deposit of the Red Wine Project







#### Figure 4.3 REE Mineral Occurrences Map of the Red Wine Complex





### 4.2 PROPERTY DESCRIPTION

REM's holds the mineral rights to 47 near contiguous mineral licences, for a total of 1,340 mineral claims, in the Red Wine Peralkaline Complex of central south Labrador. The mineral rights are held both directly and through various option agreements and covers a total of 340 km<sup>2</sup>.

The Property is situated at the northeastern extreme of these licence blocks, in a block of three contiguous mineral licences (see Figure 4.3), consisting of 46 mineral claims, and covers an area of 11.5 km<sup>2</sup>. The mineral rights to the Property are summarized in Table 4.1 and illustrated in Figure 4.4. Detailed information on these mineral licences is in Appendix A.

| Licence<br>No. | No. of Claims | Issued<br>Date | Expiry<br>Date | Interest | Held by    | Area<br>(km²) |
|----------------|---------------|----------------|----------------|----------|------------|---------------|
| 016277M        | 4             | 25Jun 2009     | 25 Jun 2014    | 100%     | R. Quinlan | 1.0           |
| 016522M        | 12            | 12 Oct 2009    | 12 Oct 2014    | 100%     | D. Lewis   | 3.0           |
| 016548M        | 30            | 15 Oct 2009    | 15 Oct 2014    | 100%     | M. Quinlan | 7.5           |
| Total          | 46            |                |                | -        |            | 11.5          |

 Table 4.1
 Summary of the Two Tom Property

The Two Tom REE deposit is currently covered entirely by two mineral licences; Licence No. 016277M and 016522M. The Property consists of sufficient land for exploration and development purposes.

The Two Tom deposit is situated east of REM's rare metal showings Mann #1, Mann #2, Michelin #1, Green Arrow, and North Red Wine and it is situated roughly 25 km northeast of REM's two REE occurrences called Dory Pond and Playfair South (Website: http://www.rareearthmetals.ca/article/red-wine-complex-119.asp). These mineral occurrences are not subject to this report.





#### Figure 4.4 Two Tom Mineral Claims



13





#### 4.3 **OPTION AGREEMENTS**

REM has a 100% interest in the mineral licences that cover and encircle the Two Tom deposit, which is subject to two option agreements. The southeast half of the Two Tom deposit lies within Licence 016277M and is optioned from Roland and Eddie Quinlan, where R. Quinlan holds mineral rights to four mineral claims. The northeast half of the Two Tom deposit lies within Licence 016522M and is optioned from Zimtu, where D. Lewis, a partner of Zimtu, holds the mineral rights to 12 mineral claims (REM Press Release, November 16, 2011).

Adjacent to the north, south and west, Licence No. 016548M is also subject to the same option agreement with Messrs.' R. and E. Quinlan, where REM has a 100% interest. The mineral rights are held by Marilyn Quinlan and consist of 30 mineral claims.

#### 4.4 Environmental and Surface Rights

Tetra Tech is not aware of any environmental or social issues regarding the Property.

All exploration activities conducted on the Property are in compliance with relevant environmental permitting requirements. To Tetra Tech's knowledge, REM has obtained permits to use the surface rights.



## 5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

#### 5.1 ACCESSIBILITY

The Property area is located approximately 160 km northwest of Happy Valley-Goose Bay (population 7,572, Census 2006), and approximately 110 km northeast of Churchill Falls (population 650), Labrador. Access to the Property is most easily granted by helicopter. While the area is host to many lakes and ponds, the majority are unsuitable for the use of float planes, due to their shallow depths and the presence of abundant boulders (Gebru et. al 2011).

Most basic services and supplies may be sourced from Churchill Falls and Happy Valley-Goose Bay. The latter is regularly serviced via scheduled flights from St. John's, Newfoundland, and Halifax, Nova Scotia.

#### 5.2 CLIMATE

Like most of Labrador, the climate in the region of the Property (south central Labrador) has a subarctic climate (*Dfc;* Köppen climate classification) and is known for short warm summers and long cold winters. In summer, cloud cover is very high due to the numerous lakes and unstable northerly airstreams that prevail in this region.

The minimum and maximum mean annual temperatures in the region are -8.6°C and 1.6°C, respectively. July average minimum and maximum temperatures are 8.3°C and 18.9°C, respectively, and January average minimum and maximum temperatures are -27.2°C and -15.8°C, respectively. The mean annual rainfall for the region is 915.8 mm (www.worldclimate.com – Churchill Falls).

Exploration activities may take place throughout the year.

#### 5.3 LOCAL RESOURCES

The nearest town to the Property is Churchill Falls, population 670 (2006 Census). Basic supplies and fuel may be sourced from Churchill Falls. However, most support services, supplies, fuel and are sourced from Happy Valley-Goose Bay, population 7,572 (2006 Census). Activation Laboratories (Actlabs), an analytical services company, has a sample preparation laboratory set up in Happy Valley-Goose Bay.





Exploration activities are based out of a twelve to fifteen man camp on Orma Lake Road. The camp has good access to Churchill Falls, which is 80 km to the southwest. The centre of the Property is approximately 35 km from the camp (July 6 2010 press release). The Orma Lake Road, is a Churchill Falls hydro dam access road, and is located 40 km from the Property (REM press release, July 20, 2010).

#### 5.4 INFRASTRUCTURE

There is no infrastructure on the Property. The nearest road to the Property is the hydro dam access road, Orma Lake Road, approximately 50 km southwest of the Property. The only access to the Property is by helicopter from REM's base camp on Orma Lake Road.

There is no electricity on the Property. The nearest source of electricity is hydroelectric generating station in Churchill Falls, approximately 140 km southwest of the Property.

The nearest airfield is located in Churchill Falls with a 1,676 m (5,500 ft) asphalt airstrip. Churchill Falls is serviced by NL based Provincial Airlines Ltd. The majority of air traffic for the region is handled from Happy Valley-Goose Bay. As home to a Canadian Air Force base, the airfield hosts two extended airstrips; 3,368 m (11,051 ft) and 2,920 m (9,580 ft) long. Happy Valley-Goose Bay is serviced by regular scheduled flights and also hosts charter airline and helicopter service companies.

The nearest railway is the Tshiuetin rail service linking Sept-Îles, Québec (QC) to Schefferville, QC where the nearest railhead is located at Rose Bay Junction, just east of Labrador City, located roughly 300 km southwest of the Property.

Water is abundant on the Property.

#### 5.5 Physiography

The Property lies at elevations ranging from approximately 400 to 600 masl. Relief over the majority of the Red Wine Complex is gentle to moderate, and elongated lakes occupy numerous parallel ridges that trend east-northeast. These lakes and the various ponds of the region are often shallow and contain many boulders. Along the tops of the ranges of ridges, bedrock exposure is 75 to 100%. This decreases to 0 to 35% along the flanks of the ridges and valley floors, which are covered by thick forest cover, lakes, swamps or large boulder fields (Gebru et al. 2011).





## 6.0 HISTORY

Prior to the involvement of REM with the Property, various exploration activities on the Two Tom deposit of the Red Wine Complex took place between 1967 and 1987 (Table 6.1).

| Year          | Company                                  | Activity                                              | Comments                                                                                                                                                                                                                                                                                                                                                                                | Source                        |
|---------------|------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 1967          | Barringer<br>(commissioned<br>by Brinex) | Airborne<br>radiometric<br>survey                     | Disclosed an area of high<br>uranium and thorium activity<br>centred immediately southwest<br>of Two Tom Lake.                                                                                                                                                                                                                                                                          | Boniwell, 1967                |
| 1968          | Brinex                                   | Geological<br>mapping and<br>scintillometer<br>survey | Follow-up work to radiometric<br>survey, established radioactive<br>source to be boulder fields of<br>radioactive syenite gneiss.                                                                                                                                                                                                                                                       | Smith, 1968                   |
| 1970          | Brinex                                   | Geological<br>mapping and<br>metallurgical<br>testing | Further mapping on a reconnaissance scale in the immediate area, and 518 kg bulk sample for metallurgical testing.                                                                                                                                                                                                                                                                      | Westoll, 1971                 |
| 1978-<br>1979 | A. Thomas,<br>Newfoundland<br>Government | Geological mapping                                    | Detailed geological mapping of the Two Tom Lake and surrounding area.                                                                                                                                                                                                                                                                                                                   | Thomas, 1981                  |
| 1986-<br>1987 | Batterson and<br>Miller                  | Quaternary<br>mapping, Nb-<br>Be deposit<br>search    | Follow up on reports of radioactive boulder trains (attempt to discover bedrock sources), 1200 x 1000 m grid established, 259 station sites selected and 80 bedrock/boulder samples collected (up to $0.25\%$ $Y_2O_3^*$ , $0.27\%$ BeO, $0.25\%$ Nb <sub>2</sub> O <sub>5</sub> in bedrock and $0.30\%$ $Y_2O_3$ , $0.46\%$ BeO, $0.23\%$ Nb <sub>2</sub> O <sub>5</sub> in boulders). | Batterson and<br>Miller, 1987 |
| 1986          | Batterson and Legrow                     | Boulder train<br>and<br>scintillometer<br>survey      | Two Tom Lake area was<br>affected by eastward flowing ice<br>of the Laurentide ice sheet                                                                                                                                                                                                                                                                                                | Batterson and Legrow, 1986    |

| Table 6.1 | Summary of                             | Exploration | Activities, | 1967-1987 |
|-----------|----------------------------------------|-------------|-------------|-----------|
|           | •••••••••••••••••••••••••••••••••••••• |             | ,           |           |

There are no historical mineral resources or reserves, nor has there been any historical production on the Property.





# 7.0 GEOLOGICAL SETTING AND MINERALIZATION

#### 7.1 REGIONAL GEOLOGY

The Property is situated within the Central Mineral Belt of Labrador, proximal to the northern margin of the Grenville Structural Province. It is underlain by peralkaline volcanic and porphyritic rocks of the Letitia Lake Group and cogenetic peralkaline and alkaline plutonic rocks of the Arc Lake and Red Wine Intrusive Suites (~1.3 Ga). The Letitia Lake Group and the associated intrusive rocks are bound on the north by terrestrial to shallow marine sedimentary rocks, basaltic flows and gabbro sills of the Seal Lake Group (1.0 to 1.2 Ga) and to the south by granitoid rocks of the Trans-Labrador batholith (1.65 Ga) (Belik 1996).

#### 7.2 LOCAL GEOLOGY

The Two Tom deposit occurs within a peralkaline syenite pluton that is 2 km in diameter. The southern portion of the pluton is comprised of unmineralized medium grained riebeckite syenite. According to Miller (1988), there is a mineralized syenite outcrop in the northern portion of the pluton, which intrudes the Letitia Lake Group at the lower contact with the Bessie Lake Formation (Miller 1988).

#### 7.3 PROPERTY GEOLOGY

The northwest striking Two Tom zone has been traced by prospecting, trenching and drilling. It is at least 1,100 m long and is situated within the eastern end of the Red Wine Complex.

Exposure of the Two Tom Lake deposit is very poor, and consists mainly of radioactive boulder fields. The more radioactive western half of the area can be traced along the ground for approximately 244 m. It trends at roughly 040° and is 15 to 23 m wide. In a portion of this zone, the gneissic banding within the syenite boulders all display the same near-vertical dip and strike of approximately 137°. This suggests that they have not shifted very far from their bedrock source. From these boulder fields and from known outcrops, the total length of the mineralized zone is estimated to be at least 1,524 m in length. The predominant radioactive boulder type is a medium-grained, agpatic-textured alkali gneiss, which is a metamorphosed and metasomatized equivalent of an alkali syenite or granite protolith (Westoll 1971). The gneissic texture is comprised of alternating dark layers of arfvedsonite and aegirine-augite, with trace riebeckite and chlorite and light layers of albite and orthoclase with trace anorthoclase and fine-grained perthite or antiperthite (Deane 1970). As indicated by the distribution of boulders and outcrops, this rock type





appears to be entirely contained within a quartz feldspar porphyry of the Letitia Lake Group (Westoll 1971).

There is a textural coarsening in the syenite complex from west to east. The syenite complex also gets progressively more felsic from west to east with increasing alkali-feldspar content. At Two Tom, shear deformation-related alteration in a thick syenite complex appears to be related to REE-Nb-Be mineralization. The strike of shear zones is mostly northwest-southeast. However, dip direction and dip is variable. In Two Tom North, it appears westerly and steeply dipping (65-75°). In the Two Tom South, shear zone dip direction is easterly whereas dip varies from shallow to steep (Gebru et al. 2011). A general map of the geology, with the drillhole locations shown is provided in Figure 7.1.

From mapping, trenching and drilling activities, six rocks units have been identified in the Two Tom South area (syenite porphyry, amphibole schist/altered syenite porphyry, feldspar-amphibole schist, microsyenite, amphibole feldspar porphyry and muscovite schist) and nine main rock types have been observed in the Two Tom North area (syenite porphyry, feldspar porphyry, amphibole gneiss, actinolitic amphibole schist and muscovite schist, biotite schist with intermittent green amphibole/pyroxene layers, meta-microsyenite, quartz and quartz-feldspar veins) (Gebru et al. 2011).







#### Figure 7.1 General Property Geology Map (REM, 2011)





#### 7.3.1 Тwo Том South

Overburden thicknesses in the Two Tom South area vary between 6 to 14 m, and consist of syenitic boulders with lesser amounts of minor granitic cobbles and pebbles. Rock types observed in the Two Tom South area are described as follows:

**Syenite porphyry**: coarse grained, green to light grey and light pink mottled rock, comprised of amphibole, alkali-feldspar and quartz and accessory biotite. It occurs within various stratigraphic levels, and occupies the hanging wall side of the mineralization. Shear zones within a showing exhibit brownish oxidation and strike to the northwest with a dip of15-20°. Rhythmic banding between the pink alkali-feldspar and the green amphiboles/pyroxene (?) is occasionally observed. Beyond the shear zones, the unit is massive. Syenite porphyry to the west is coarse grained with light grey alkali-feldspars and minor biotite and amphiboles (Gebru et al. 2011).

**Amphibole schist**: fine grained schistose rock in contact with the pinkish syenite porphyry. It was not observed in outcrop due to the extensive boulder cover but occurs in the upper intersections of drillholes TT-01, TT-02, TT-03 and TT-04. The rock tends to be laminated and exhibits a phyllic fabric, and may be the product of grain size reduction of the syenite porphyry during shearing (Gebru et al. 2011).

**Altered syenite**: light to brownish green rock, comprised of retrograde minerals such as chlorite, epidote, actinolite and muscovite. Silicification and distinct quartz and feldspathic veining are present throughout. Narrow intercalations of remnant syenite porphyry are observed throughout (Gebru et al. 2011).

**Feldspar-amphibole (actinolite) schist**: green, medium to coarse grained schistose rock predominantly composed of actinolite, amphibole, pyroxene, feldspar and some biotite. This unit always marks the footwall of the altered syenite porphyry, and is variable in thickness. White quartz veins with coarse honey yellow coloured sphalerite and galena crystals are present. Aegirine is suspect to be present and is thought to have formed via the alteration of arfvedsonite through reaction with highly saline aqueous fluid at low temperatures ( $\geq 350^{\circ}$ C) (Gebru et al. 2011).

**Sheared microsyenite**: medium grained, comprised of light grey feldspars and dark green amphiboles and pyroxene. This unit displays a segregation fabric between the light grey felsic and green to dark green mafic minerals. Some muscovite and biotite are associated with the light grey segregations. Interlayers of 30 to 50 cm in thickness of blue green amphibole/pyroxene composition are very common. It is often encountered in the footwall of the mineralization, adjacent to the greenish actinolitic amphibole schist. The extent of this unit is not known but it is believed to dominate the western portion of the Two Tom syenite complex. Shear deformation is present, but mineralization is intermittent due to lack of wider shear zones (Gebru et al. 2011).





#### 7.3.2 Two Tom North

No outcrops have been confirmed to be present in the Two Tom North area. Rock types observed in drill core from the Two Tom North area are described as follows:

**Syenite porphyry**: There are three varieties of this unit, each with different textures and possibly variable mineralogy. The first type occurs in the upper part of TT-07, and is dark grey, mottled with grey white, coarse grained, comprised of dark grey and dark green amphiboles (55 to 60%) and quartz and feldspar (40 to 45%). The quartz content is very minor and feldspar porphyroblasts are pale green. The rock is moderately deformed with aligned feldspars and mafic minerals. It is occasionally sheared and exhibits are reduction in grain size. The feldspar porphyroblasts are present, but are largely stretched parallel to schistosity. There are a number of shear zones with epidote(?), muscovite and biotite alteration throughout. Clay alteration along with muscovite and chlorite is ubiquitous and in such zones, the rock crumbles easily. Epidote mineralization is often observed in the margin where muscovite abundance is less. Shear foliation is intense in the alteration zones. Dips vary from 65 to 75° easterly as observed in hole TT-07 and 65-85° westerly in hole TT-09.

The second variety of the syenite porphyry occurs in the middle and lower part of TT-07. It is believed to have resulted by grain size reduction as a result of the shearing of the syenite porphyry. The resultant rock is a medium grained, dark grey to dark brown, and grey white mottled, composed of dark green to dark amphiboles/pyroxenes(?), grey white feldspars (albite), quartz, biotite and some muscovite. In places, the biotite content is prominent imparting a dark brown colour. Amphibole gneissic bands with large grey white porphyroblasts in places are present. This suggests that the amphibole gneiss which is mineralized is a metasomatic product in shear zones within this type of syenite; other finer grained green bands are also present in places. These green bands may correlate with those observed in TT-06, TT-01, TT-02, TT-03 and TT-04. In addition, approximately 5 to 7% pink and grey white feldspathic veins/metasomatites with zinc disseminations are observed.

The third variety occurs in lower part of hole TT-09, below the mineralized muscovite schist. It is dark grey, mottled with grey white, composed of dark green pyroxenes and dark amphiboles; biotite and muscovite as alteration minerals. Texturally coarse feldspars, with subordinate quartz, are set in a medium grained mafic groundmass, and. Some segregation of felsic and mafic minerals is visible. However, it is more of a schistose texture than gneiss as the rock is foliated despite the segregation. Muscovite rich shear zone bands up to 20 cm width are present. Radiometric counts in the interval shows high background 400 to 500 counts per second (cps) (Gebru et al. 2011).

**Feldspar porphyry**: pale green, light grey and dark green to grey mottled, coarse grained, composed of light grey to white pale green shaded feldspars, green and dark green amphibole with some epidote (?); rock is over 60% pale green shaded feldspars. It is very coarse grained, weakly foliated except in narrow shear zones, consists of grey white quartz veinlets up to 1 cm thickness and 3% abundance. Compositionally this rock appears to grade into granite (Gebru et al. 2011).





**Banded amphibole schist / gneiss (mylonitic gneiss):** dark to dark green and grey white mottled, comprised of amphiboles (dark and dark green), with some biotite, feldspar and quartz. Segregational features between the felsic and mafic minerals are present; the melanocratic section occurs as discontinuous pods or layers in a grey white to light green groundmass; boudinaging and transposition appears to be the cause of this disfiguration. Epidote(?) alteration occurs in the green to yellowish green groundmass. Based on core foliation and a similar unit intersected in DDH TT-05, this unit for the most part has a westerly dip of about 70° (Gebru et al. 2011).

**Meta-microsyenite:** green to dark green, medium grained, locally porphyritic, composed dominantly of mafic minerals (green and dark green amphiboles/ pyroxene?) up to 60 to 70% with grey white feldspars and quartz of 30 to 40%; some patchy quartz veinlets up to 3 mm thickness and 1 to 2% abundance are common. In places, it is fractured (fractures, measuring 40 to 50° to CA). In TT-07, the original microsyenite is largely obliterated and now looks like biotite schist; it displays dark brown to grey brown colour, largely reflecting alteration colour rather than original composition (Gebru et al. 2011).

**Muscovite (sericite) schist:** pale yellowish brown to grey white, medium grained rock, composed of muscovite/sericite, biotite, and relict mafic minerals (dark green pyroxene (?) and dark amphiboles. Albitization is common. Sphalerite stringers occur throughout and are more abundant where muscovite becomes richer, as well as in the albitized zones. Rare fine grained pyrite disseminations (<1%) are also present (Gebru et al. 2011).

#### 7.4 MINERALIZATION

Drilling has defined the Two Tom mineralization as a minimum of 1.1 km long with an arcuate-shaped zone that strikes to the west/northwest to northwest and is steeply dipping to the northeast. Widths vary from 84 m to more than 200 m, and the mineralization is open in all directions (REM Press Release November 16, 2011).

Mineralogical test work on two composite REE samples from the Property (from the Mann#1 and Two Tom deposits) were conducted by SGS Mineral Services of Lakefield, Ontario via High Definition Mineralogy Analysis. The test work found that that monazite and cerium-calcium silicate host the majority of:

- La ~73% (~58% in monazite and 15% in the cerium-calcium silicates, respectively)
- Ce ~66% (~41% and 25%, respectively)
- Pr ~82% (~36% and 46%, respectively)
- Nd ~86% (~34% and 54%, respectively).




It also found that the cerium-calcium silicate hosts the majority of:

- Sm~89%
- Gd ~90%
- Dy ~98%
- Y ~96%

Pyrochlore and niobophyllite host the majority of the niobium (~48% and ~26%, respectively).

Readily visible mineralization in Two Tom drill core is in the form of honey-yellow and light brown sphalerite disseminations and bands within or at the margin of feldspathic veins and in the more green coloured layers of amphibole. An off-white mineral, thought to be barite, is also visible. Within the Two Tom South area, a greenish brown to dark brown mineral, thought to be epidote, also occurs in association with the green amphiboles. Wilton (2010) analyzed three Two Tom samples, provided by REM in 2009, using a Scanning Electron Microscope (SEM) equipped with Mineral Liberation Analyser (MLA). A number of heavy "bright" minerals were identified by the MLA, the most significant of which are barylite, barium-silicate with niobium-iron-cerium(zinc), allanite, britholite, thorite and gadolinite. Barium-silicate, britholite and thorite were reported to appear to be secondary stage formation, often growing on other minerals (Gebru et al. 2011).

Chemical analyses of drillhole and trench samples indicate multiple zones of REE-Be-Nb mineralization. High zinc, thorium, barium and phosphorous values always accompany the REE-Be-Nb mineralization. The mineralization at Two Tom has been intersected in drilling over a strike length of 1.1 km and to a vertical depth of 100 to 150 m (Gebru et al. 2011).

Three modes of mineralization are recognized in Two Tom:

- REE-Nb-Be mineralization hosted in syenite and intersected in holes TT-01, TT-02, TT-03 and TT-04
- REE-Nb-Be mineralization hosted in banded amphibole schist/gneiss
- in muscovite schist interpreted as an alteration of feldspar-rich syenite porphyry.

The former occurs in Two Tom South whereas the latter two types occur in Two Tom North (Gebru et al. 2011).

Two scenarios are suggested regarding the modes of the mineralization.

• The main zone of mineralization intersected in ten drillholes (TT-01 to TT-10) is largely one entity interconnected from south to north as indicated in the geological map. In this scenario, the observed three styles of mineralization are simply variation in alteration types due to differing mineralizing fluid composition, and physio-chemical conditions such as





different pressure-temperature conditions of mineral formation. Thus a continuous mineralized zone formed as a result of one large scale shear zone. Undulation in the shape of the mineralization is largely due to variations in structures (Gebru et al. 2011).

 Mineralization could represent several sub-parallel shear zones from north to south. In this scenario, mineralization formed in several distinct shear zones. This implies that the 80 m thick shear-hosted REE-Nb-Be mineralization intersected in Two Tom South continues to the north forming a separate zone west of the zone intersected in Two Tom North. Likewise, the mineralization intersected in Two Tom North occurs in two different sub parallel shear zones. Another separate parallel mineralized zone was intersected in DDH TT-11 (Gebru et al. 2011).

Table 7.1 presents the elements and common oxides that occur rare earth metal deposits (website: Web Mineral). References to TREO, unless otherwise stated, include yttrium oxide.

| Element          | Element<br>Acronym | Common<br>Oxides               |      |
|------------------|--------------------|--------------------------------|------|
| Associated Elem  | nents and Ox       | ides                           |      |
| Niobium          | Nb                 | Nb <sub>2</sub> O <sub>5</sub> |      |
| Beryllium        | Be                 | BeO                            | -    |
| Thorium          | Th                 | ThO <sub>2</sub>               |      |
| Yttrium          | Y                  | Y <sub>2</sub> O <sub>3</sub>  |      |
| Light Rare Earth | Elements a         | nd Oxides                      |      |
| Lanthanum        | La                 | La <sub>2</sub> O <sub>3</sub> |      |
| Cerium           | Ce                 | Ce <sub>2</sub> O <sub>3</sub> |      |
| Praseodymium     | Pr                 | Pr <sub>2</sub> O <sub>3</sub> |      |
| Neodymium        | Nd                 | $Nd_2O_3$                      |      |
| Samarium         | Sm                 | Sm <sub>2</sub> O <sub>3</sub> |      |
| Heavy Rare Ear   | th Elements        | and Oxides                     |      |
| Europium         | Eu                 | Eu <sub>2</sub> O <sub>3</sub> | TREO |
| Gadolinium       | Gd                 | Gd <sub>2</sub> O <sub>3</sub> |      |
| Terbium          | Tb                 | Tb <sub>2</sub> O <sub>3</sub> |      |
| Dysprosium       | Dy                 | Dy <sub>2</sub> O <sub>3</sub> |      |
| Holmium          | Но                 | Ho <sub>2</sub> O <sub>3</sub> |      |
| Erbium           | Er                 | Er <sub>2</sub> O <sub>3</sub> | 1    |
| Thulium          | Tm                 | Tm <sub>2</sub> O <sub>3</sub> |      |
| Ytterbium        | Yb                 | Yb <sub>2</sub> O <sub>3</sub> |      |
| Lutetium         | Lu                 | Lu <sub>2</sub> O <sub>3</sub> |      |

# Table 7.1List of REEs, REOs and Metal Oxides Associated with Rare Earth<br/>Metal Mineralization





# 8.0 DEPOSIT TYPES

The Two Tom deposit is considered to be a peralkaline igneous (syenite) intrusive deposit, that is, an igneous deposit that has a higher ratio of sodium and potassium to aluminium than is needed to produce feldspar. Peralkaline rocks span the range of silica saturation, from granites through syenites to feldspathoid-bearing undersaturated rocks. Deposits of rare metals in peralkaline rocks occur in all rock types without regard for silica activity (Richardson and Birkett 1995).

The following is taken from Kerr (2011).

Peralkaline igneous rocks are a tiny part of the spectrum of igneous rocks, but they are very distinctive. The high molecular values of  $(K_2O + Na_2O)/Al_2O_3)$  in these magmas favours crystallization of Na-bearing amphiboles (arfvedsonite, riebeckite) or pyroxenes (aegirine), and they may also be silica-undersaturated, containing nepheline or other feldspathoid minerals. Peralkaline magmas are commonly enriched in REE, Y, Zr, Nb, Hf, Ta, and in fluorine (F); they may also be enriched in incompatible elements, such as U, Th, Rb, Cs, Pb, and Be. Deposits associated with peralkaline suites tend to be enriched in Y and heavy REE compared to those linked to carbonatites (Richardson and Birkett, 1995a, b; Castor and Hedrick, 2006). The settings of deposits in peralkaline suites are varied, and they include a complete spectrum from orthomagmatic to hydrothermal-metasomatic. Orthomagmatic types include cumulate-like layered accumulations of REE-bearing minerals such as apatite or eudialyte (a Na-Zr-REE silicate) in syenites, and disseminated mineralization in evolved peralkaline granites, aplites and pegmatites. Deposits in these high-level plutonic to subvolcanic settings are influenced also by hydrothermal processes, but opinions on the importance and role of the latter diverge. There is a general consensus that magmatic fractionation processes provide the main mechanism for REE concentration (Richardson and Birkett, 1995a, b), although fluid interactions and hydrothermal processes maybe important in promoting deposition of the REE and controlling mineral assemblages (e.g., Williams-Jones, 2010).





# 9.0 EXPLORATION

The Company has been performing field work on the Red Wine Complex since June 2010. The northwest striking Two Tom zone, situated at the eastern end of the complex, has been traced by prospecting, trenching and drilling over a strike-length of at least 1.3 km (September 8, 2011 press release).

# 9.1 2010 Airborne Magnetic Gradiometer and Radiometric Survey

In the summer of 2010, REM commissioned Aeroquest International Limited (Aeroquest) to conduct a low level airborne magnetic gradiometer and radiometric survey on the Red Wine Complex. During the period of June 29 to July 11, 2010, a total of 3,548 line km was flown. Lines were spaced 100 m apart and the aircraft was flown at a height of 50 m. The survey measured total field magnetic intensity and horizontal gradient measurements, and a radiometric dataset consisting of uranium (U), thorium (Th), and potassium (K) counts was collected. Various high priority radiometric/magnetic anomalies were isolated for follow-up, including the Two Tom deposit (July 20 2010 press release). The airborne survey was followed by an extensive field program, as outlined below.

# 9.2 2010 EXPLORATION PROGRAM

In the summer of 2010, REM conducted an exploration program within the Red Wine Complex that included prospecting, geological mapping, trenching, litho-geochemical sampling and channel sampling. The program followed up on 73 high priority radiometric/magnetic anomaly clusters, including the Two Tom prospect (REM press release, 22 November, 2010). Universal Helicopters Ltd. (Universal), based in Happy Valley-Goose Bay, was contracted to transport the crew between the various properties from a 12 to 15 person base camp located on the Orma Lake Road approximately 80 km north of the town of Churchill Falls (Gebru et al. 2011).

Two Tom South hosts Be-Nb-REE showings referred to as A, B, C, D and E, in which trenches were cut (Gebru et al. 2011). Combined with channel sampling, this successfully outlined the mineralization and included the best result from Trench #2 where assays averaged 1.70% TREO, 0.34% Nb<sub>2</sub>O<sub>5</sub>, and 0.27% BeO over 17.8 m (REM press release: October 25, 2010). Furthermore, results from Trench #1 samples, located approximately 200 m along strike from Trench #2 averaged 1.55% TREO, 0.69% Nb<sub>2</sub>O<sub>5</sub>, and 0.16% BeO over 14.4 m (REM press release: August 31, 2010). A summary of the trench statistics is provided in Table 9.1.





| Trench-ID | Easting<br>(m) | Northing<br>(m) | Elevation<br>(masl) | Length<br>(m) | Azimuth<br>(°) |
|-----------|----------------|-----------------|---------------------|---------------|----------------|
| TTR-01    | 555947         | 6007390         | 428                 | 14.4          | 230            |
| TTR-02A   | 555852         | 6007542         | 421                 | 11.8          | 255            |
| TTR-02B   | 555852         | 6007542         | 421                 | 6.0           | 75             |
| TR-03     | 555971         | 6007414         | 426                 | 12.0          | 195            |

| Table 9.1 | Summary  | of Two | Tom | Trenches |
|-----------|----------|--------|-----|----------|
|           | Gainnary | 0      |     | 1101100  |

For the 2010 Two Tom prospecting campaign, 70 grab samples were collected, and a summary of the results is provided in Table 9.2.

| Table 9.2 | Summary | of 2010 Two | <b>Tom Prospecting</b> | g Samples |
|-----------|---------|-------------|------------------------|-----------|
|           |         |             |                        |           |

| Number of | TREO      | HREO         | Nb <sub>2</sub> O <sub>5</sub> | BeO            | ZrO <sub>2</sub> | Ce <sub>2</sub> O <sub>3</sub> | La <sub>2</sub> O <sub>3</sub> | Nd <sub>2</sub> O <sub>3</sub> | Y <sub>2</sub> O <sub>3</sub> |
|-----------|-----------|--------------|--------------------------------|----------------|------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|
| Samples   | (%)       | (%)          | (%)                            | (%)            | (%)              | (%)                            | (%)                            | (%)                            | (%)                           |
| 70        | 0.02-11.9 | 2.7-<br>42.1 | 0.01-<br>2.88                  | 0.002<br>-0.73 | 0.003-<br>1.96   | 0.006-<br>5.75                 | 0.01-<br>2.72                  | 0.002-<br>1.81                 | 0.004<br>-0.46                |

Source: November 22 2010 press release

Based upon positive results of the 2010 summer exploration program, REM designed a preliminary diamond drill program at, what is now known as, the Two Tom deposit. Drilling on the Two Tom deposit commenced in September 2010 and is discussed further in Section 10.0.





# 10.0 DRILLING

To date, REM has drilled a total of 24 diamond drillholes on the Property. Two drillholes, TT-15 and TT-17, were abandoned due caving and poor drilling conditions, were moved and re-drilled as TT-15b and TT-17b.

Drillholes were drilled on sections approximately100 m apart, with a nominal vertical separation of 50 to 100 m between holes on the same section. Drilling to date has confirmed the extent of Nb-Be-REE mineralization over a strike length of approximately 1,100 m, and to an average vertical depth of 200 m. Mineralization appears to be open along strike to the northwest and to the south, as well as laterally to the east and west. A summary of the 2010 and 2011 drilling programs is provided below.

## 10.1 2010 DRILLING PROGRAM

Based upon results of the airborne magnetic gradiometer and radiometric survey, and positive results of the 2010 summer exploration program, a diamond drill program was planned for the Two Tom deposit in the Red Wine Complex. Included in the 2010 diamond drilling program were the Mann #1 and Dory Pond prospects. The Mann#1 and Dory Pond prospects are not subject to this report.

At Two Tom, 11 diamond drillholes totalling 1,847 m (Table 10.1) were drilled between September 6 and September 30, 2010 by Landrill International Ltd. (Landrill) of Moncton, New Brunswick. Universal was contracted to provide helicopter support and both an A-Star-B2 and Bell 407 were utilized. Core diameter for all drillholes was NQ size (47.6 mm) and a total of 678 samples were collected for assaying (Gebru et al. 2011). Drillholes were surveyed using a Reflex EZ Shot instrument.



| Drillhole | Easting<br>(m) | Northing<br>(m) | Elevation<br>(masl) | Length<br>(m) | Bearing<br>(°Azimuth) | Dip<br>(°) |
|-----------|----------------|-----------------|---------------------|---------------|-----------------------|------------|
| TT-01     | 555893         | 6007575         | 419                 | 164           | 230                   | -45        |
| TT-02     | 555893         | 6007575         | 419                 | 152           | 230                   | -75        |
| TT-03     | 556029         | 6007431         | 428                 | 161           | 230                   | -45        |
| TT-04     | 556029         | 6007431         | 428                 | 171           | 230                   | -75        |
| TT-05     | 555746         | 6007887         | 407                 | 173           | 230                   | -45        |
| TT-06     | 555608         | 6008056         | 405                 | 143           | 230                   | -45        |
| TT-07     | 555830         | 6007952         | 407                 | 281           | 230                   | -45        |
| TT-08     | 555830         | 6007952         | 407                 | 26            | 230                   | -70        |
| TT-09     | 555733         | 6008188         | 401                 | 203           | 230                   | -45        |
| TT-10     | 555399         | 6008292         | 405                 | 221           | 230                   | -45        |
| TT-11     | 555653         | 6007232         | 440                 | 152           | 230                   | -45        |

| Table 10 1 | Summary | of the | 2010 Two | Tom Dr | ill Program |
|------------|---------|--------|----------|--------|-------------|
|            | Summary |        | 2010 100 |        | in Frogram  |

All 11 drillholes were oriented 230° azimuth with a dip of -45°, with the exception of three drillholes, TT-02, TT-4 and TT-08, which had dips of either -75° or -70°. All drillholes intersected REE-Nb-Be mineralization and validated a mineralized strike length of at least 500 m. Drillhole TT-11 appears to have intersected REE-Nb-Be mineralization that does not conform to the main interpreted Two Tom deposit.

Table 10.2 summarizes select intersections of significant mineralization.

| Drillhole | From<br>(m)        | To<br>(m) | Interval<br>(m) | TREO% | Y <sub>2</sub> O <sub>3</sub> % | Nb <sub>2</sub> O <sub>5</sub> % | BeO% |
|-----------|--------------------|-----------|-----------------|-------|---------------------------------|----------------------------------|------|
|           | 20.80              | 126.50    | 105.70          | 1.35  | 0.049                           | 0.31                             | 0.32 |
| TT-01     | including<br>20.80 | 86.00     | 65.20           | 1.68  | 0.042                           | 0.30                             | 0.37 |
| TT-02     | 18.50              | 99.60     | 81.00           | 1.11  | 0.038                           | 0.29                             | 0.23 |
| TT-03     | 48.50              | 137.00    | 88.50           | 1.32  | 0.05                            | 0.37                             | 0.18 |
| TT-04     | 78.00              | 151.00    | 73.00           | 1.18  | 0.046                           | 0.38                             | 0.18 |
| TT-05     | 4.50               | 33.50     | 29.00           | 1.36  | 0.037                           | 0.23                             | 0.24 |
| TT-07     | 44.00              | 246.50    | 202.50          | 0.99  | 0.041                           | 0.22                             | 0.13 |
| TT-08     | 9.50               | 23.00     | 13.50           | 0.41  | 0.021                           | 0.27                             | 0.08 |
|           | 6.10               | 17.00     | 10.90           | 0.98  | 0.038                           | 0.06                             | 0.11 |
| TT-11     | and<br>39.00       | 44.65     | 5.65            | 1.8   | 0.038                           | 0.18                             | 0.25 |
|           | and<br>65.45       | 70.00     | 4.55            | 1.59  | 0.052                           | 0.21                             | 0.39 |

 Table 10.2
 Summary of Select Mineralized Intersections from the 2010 Drill

 Program

Note: drill intercepts do not represent true widths.





# 10.2 2011 DRILL PROGRAM

The 2011 program focused on infill and expansion drill testing of the Two Tom deposit. Thirteen additional diamond drillholes totalling 3,622.01 m () were drilled between June and September of 2011. Not included in this summary are holes TT-15 and TT-17 which, after caving and subsequently stuck rods, were abandoned and re-drilled as TT-15b and TT-17b, respectively.

Drilling was performed by Landrill and the core diameter for all drillholes was of NQ size (46.7 mm). Drillholes were surveyed using a Reflex EZ Shot instrument. The drill program was supported by Bell 407 helicopter from Wisk Air, a Thunder Bay, Ontario-based charter helicopter company.

| Drillhole | Easting<br>(m) | Northing<br>(m) | Elevation<br>(masl) | Length<br>(m) | Bearing<br>(°Az) | Dip<br>(°) |
|-----------|----------------|-----------------|---------------------|---------------|------------------|------------|
| TT-12     | 555435         | 6008328         | 405                 | 261.00        | 230              | -45        |
| TT-13     | 555517         | 6008278         | 407                 | 258.40        | 230              | -45        |
| TT-14     | 555556         | 6008313         | 407                 | 348.61        | 230              | -45        |
| TT-15b    | 555600         | 6008236         | 412                 | 477.50        | 230              | -45        |
| TT-16     | 555578         | 6008201         | 409                 | 381.00        | 230              | -45        |
| TT-17b    | 555834         | 6008140         | 407                 | 276.00        | 230              | -45        |
| TT-18     | 555809         | 6008041         | 403                 | 291.00        | 230              | -45        |
| TT-19     | 555791         | 6007813         | 402                 | 127.00        | 230              | -45        |
| TT-20     | 555903         | 6007683         | 406                 | 297.00        | 230              | -45        |
| TT-21     | 555846         | 6007689         | 40e                 | 204.00        | 230              | -45        |
| TT-22     | 555883         | 6007721         | 406                 | 310.50        | 230              | -45        |
| TT-23     | 555942         | 6007473         | 425                 | 174.00        | 230              | -45        |
| TT-24     | 555942         | 6007473         | 425                 | 216.00        | 230              | -70        |

#### Table 10.3 Summary of Drillholes for 2011 Two Tom Drilling Program

All drillholes were oriented 230°Az with a dip of -45°, with the exception of TT-24, that was drilled at -70° dip. All drillholes intersected REE-Nb-Be mineralization and extended the interpreted Two Tom deposit over a strike length of at least 1,100 m. Mineralization appears to be open to the northwest, south and laterally. Table 10.4 below summarizes selected intersections of significant mineralization.





| Drillhole | From (m)         | To (m) | Interval (m) | TREO% | Y <sub>2</sub> O <sub>3</sub> % | Nb <sub>2</sub> O <sub>5</sub> % | BeO% |
|-----------|------------------|--------|--------------|-------|---------------------------------|----------------------------------|------|
| TT 40     | 41.20            | 189.50 | 148.30       | 1.52  | 0.040                           | 0.17                             | 0.18 |
| 11-12     | including 41.20  | 137.40 | 96.20        | 2.05  | 0.045                           | 0.22                             | 0.23 |
| TT 12     | 23.40            | 218.50 | 195.10       | 1.46  | 0.040                           | 0.19                             | 0.18 |
| 11-13     | Including 49.80  | 171.30 | 121.50       | 1.86  | 0.050                           | 0.22                             | 0.22 |
| TT-13     | 194.10           | 218.50 | 24.40        | 1.84  | 0.050                           | 0.17                             | 0.24 |
| TT-14     | 123.00           | 212.00 | 89.00        | 1.82  | 0.055                           | 0.26                             | 0.27 |
| TT-14     | 225.50           | 282.50 | 57.00        | 0.78  | 0.029                           | 0.07                             | 0.11 |
| TT 15h    | 106.50           | 282.00 | 175.50       | 1.68  | 0.047                           | 0.21                             | 0.19 |
| 11-150    | including 106.50 | 226.50 | 120.00       | 2.15  | 0.058                           | 0.27                             | 0.24 |
|           | 21.00            | 237.00 | 216.00       | 0.87  | 0.032                           | 0.20                             | 0.14 |
| TT-16     | including 21.00  | 115.50 | 94.50        | 1.14  | 0.039                           | 0.39                             | 0.21 |
|           | including 49.50  | 97.50  | 48.00        | 1.66  | 0.056                           | 0.24                             | 0.21 |
| TT 17h    | 150.20           | 233.90 | 83.70        | 0.91  | 0.029                           | 0.17                             | 0.20 |
| 11-170    | including 151.70 | 185.90 | 34.20        | 1.03  | 0.034                           | 1.06                             | 0.24 |
| TT-17b    | 203.90           | 221.90 | 18.00        | 1.06  | 0.300                           | 0.27                             | 0.19 |
|           | 25.80            | 281.60 | 255.80       | 1.00  | 0.032                           | 0.27                             | 0.18 |
| TT-18     | including 90.40  | 183.90 | 93.50        | 1.42  | 0.040                           | 0.41                             | 0.28 |
|           | including 109.90 | 183.90 | 74.00        | 1.55  | 0.041                           | 0.32                             | 0.27 |
| TT_18     | 209.90           | 281.60 | 71.70        | 1.30  | 0.043                           | 0.11                             | 0.15 |
| 11-10     | including 227.90 | 281.60 | 53.70        | 1.56  | 0.051                           | 0.14                             | 0.18 |
| TT 10     | 6.00             | 121.50 | 115.50       | 0.78  | 0.023                           | 0.16                             | 0.12 |
| 11-13     | including 6.00   | 30.30  | 24.30        | 2.13  | 0.037                           | 0.23                             | 0.23 |
| TT-20     | 16.60            | 297.00 | 280.40       | 0.82  | 0.028                           | 0.33                             | 0.11 |
| 11-20     | including 25.30  | 45.30  | 20.00        | 1.42  | 0.043                           | 1.23                             | 0.31 |
| TT-20     | 202.00           | 297.00 | 95.00        | 1.46  | 0.042                           | 0.19                             | 0.16 |
| TT_21     | 9.00             | 153.70 | 144.70       | 0.84  | 0.027                           | 0.23                             | 0.16 |
| 11-21     | including 9.00   | 48.90  | 39.90        | 1.80  | 0.045                           | 0.30                             | 0.31 |
| TT-21     | 104.40           | 125.40 | 21.00        | 0.87  | 0.028                           | 0.40                             | 0.34 |
| TT_22     | 12.00            | 218.20 | 206.20       | 0.84  | 0.027                           | 0.19                             | 0.13 |
| 11-22     | including 12.00  | 66.70  | 54.70        | 1.67  | 0.045                           | 0.32                             | 0.30 |
| TT-22     | 102.70           | 146.20 | 43.50        | 0.90  | 0.028                           | 0.18                             | 0.13 |
| TT-23     | 29.00            | 153.00 | 124.00       | 1.03  | 0.043                           | 0.37                             | 0.21 |
| 11-23     | including 29.00  | 90.70  | 61.70        | 1.49  | 0.049                           | 0.57                             | 0.33 |
| TT-24     | 26.80            | 144.30 | 117.50       | 1.26  | 0.043                           | 0.38                             | 0.24 |
| 11-24     | including 26.80  | 91.50  | 64.70        | 1.89  | 0.057                           | 0.61                             | 0.38 |

# Table 10.4 Summary of Select Mineralized Intersections from 2011 Drill Program

Note: drill intercepts do not represent true widths.





# 10.3 DRILLING PROCEDURES

Core drilling is collected twice a day, generally at drill crew shift changes, where the shifts core boxes are transported by helicopter long-line to the base camp. At the base camp, the core boxes are collected by a project geologist next to the core logging tent.

Diamond drill core is rough logged by a geologist or geotechnician and initially marked for major lithology changes and sample intervals; and inserts a sample tag at the 'from' position of the sample interval. Sample intervals are marked on 1.5 m sample intervals and lithological boundaries are respected. REM used a scintillometer on the drill core to determine the extent of mineralization where sampling should end within a mineralized lithology. Scintillometer readings were taken every three meters. Where scintillometer returned background readings (i.e. less 150 to 170 counts per second), shoulder samples were marked for collected beyond the mineralization.

Detailed logging of the core was carried out within the core logging and sampling tent. Drill core descriptions were inputted directly into an Excel spreadsheet and included information such as lithological description, core recovery, number of veins, measure of foliation, etc.

The drill core is sampled by pneumatic core splitter. The core was split in half, where one half was returned to the core box and one half placed in the sample bag. When a sample interval is completed, the duplicate sample tag is inserted into the bag and is sealed with a zip tie. The core splitter is cleaned by paint brush after every sample.

In both drill programs, in 2010 and 2011, REM used a series of blank, standard and quarter split (or field) duplicates in the sample preparation as part of their internal quality assurance and quality control (QA/QC). An alternating blank, standard or duplicate sample was inserted every ten samples.

During the 2010 drill program, REM used blank samples taken from a local quarry of limestone. Standard samples were prepared by and purchased from Canada Centre for Mineral and Energy Technology (Canmet) listed below.

| OKA-1 | Reference Niobium Ore     |
|-------|---------------------------|
| OKA-2 | Reference REE Thorium Ore |
| FER-1 | Reference Iron Ore        |

During the 2011 drill program, REM used two types of blank samples and four types of standard samples. The blank and standard samples were prepared by and purchased from Ore Research & Exploration Pty Ltd Of Bayswater, Australia, and are listed below.





| Oreas 22c  | Quartz blank sample                              |
|------------|--------------------------------------------------|
| Oreas 23a  | Granite blank sample                             |
| Oreas100a  | Uranium bearing multi-element reference material |
| Oreas 101a | Uranium ore multi-element reference material     |
| Oreas 101b | Uranium ore multi-element reference material     |
| Oreas 146  | REE Ore Reference Material                       |

Sample bags are put into larger rice bags, approximately five samples per bag, are labeled with permanent marker and also sealed with a zip tie. The rice bags are then stored beside the core logging and sampling tent. Batches of core samples are then transported, by REM personnel, mainly once per week, to the Actlabs sample preparation laboratory in Happy Valley-Goose Bay. The drive is typically six hours by road.

Tetra Tech believes that the stated chain of custody and QA/QC procedures followed by REM attains a standard that meets or exceeds industry norms. It is the opinion of Tetra Tech that there are no factors, with regards to logging and sampling procedures that could materially impact the accuracy and reliability of the results. Tetra Tech is also of the opinion that the procedures followed by REM are adequate for this type of exploration and drilling program.



# 11.0 SAMPLE PREPARATION, ANALYSES, AND SECURITY

# 11.1 2010 PROSPECTING

All samples from the 2010 prospecting program were delivered by REM personnel to the Actlabs sample preparation facility in Happy Valley-Goose Bay. The samples were processed and representative pulps were sent for analysis to the Actlabs analytical facility in Ancaster, Ontario. A total digestion technique employing a lithium metaborate/tetraborate fusion and the inductively coupled plasma-mass spectrometry (ICP-MS) or ICP-optical emission spectrometry (ICP-OES) and X-ray fluorescence (XRF) methods were utilized.

Actlabs is an ISO 17025 (Lab 266) and NELAP (Lab E87979) accredited lab for specific registered tests

## 11.2 2010 AND 2011 DRILLING

Drill core samples from the 2010 and 2011 Two Tom drill programs were delivered daily from the drill sites to the exploration camp via helicopter. In the core shack, drill core was logged and samples were taken at geologically significant intervals, typically one and half metres. Core recovery was approximately 95%. The designated sample intervals were cut using a diamond saw or manual core splitter. One half of the core was selected for geochemical analysis with the remaining half being placed back into the core box. Care was taken to ensure that neither half of the core represented a bias with respect to the nature and mineral content of the sample. All core boxes are stored in on site at the base camp (Gebru et al. 2011).

Drill core samples from the 2010 and 2011 Two Tom drill programs were transported and delivered by REM personnel to the Actlabs sample preparation facility in Happy Valley-Goose Bay.

Samples were prepared by crushing the sample with up to 90% of the sample passing a 2 mm screen. The sample was riffle split and 250 g were taken and pulverized with hardened steel to 95% of the material passing a 105  $\mu$ m screen.

After processing, representative pulps were sent to the Actlabs analytical facility in Ancaster, Ontario. Sample rejects are stored in a warehouse in Happy Valley-Goose Bay.

At the analytical laboratory, the sample aliquot undergoes a total digestion technique employing a lithium metaborate/tetraborate fusion. The analysis methods were





performed by ICP, ICP-MS, ICP-OES and XRF methods. Elemental analyses according to analytical technique are listed in Table 11.1 and Table 11.2.

Niobium is analysed separately using X-ray Fluorescence Spectroscopy (XRFS) analysis. Results are presented as  $Nb_2O_5\%$  with a detection limit of 0.003%.

Tetra Tech is of the opinion that the analytical laboratory and the analytical methods employed are adequate for this type of REE deposit.

| Element | Detection<br>Limit<br>(ppm) |   | Element | Detection<br>Limit<br>(ppm) |
|---------|-----------------------------|---|---------|-----------------------------|
| Ag      | 0.5                         |   | Nd      | 0.1                         |
| As      | 5                           |   | Ni      | 20                          |
| Ва      | 3                           |   | Pb      | 5                           |
| Be      | 1                           |   | Pr      | 0.05                        |
| Bi      | 0.4                         |   | Rb      | 2                           |
| Ce      | 0.1                         |   | Sb      | 0.5                         |
| Со      | 1                           |   | Sc      | 1                           |
| Cr      | 20                          |   | Sm      | 0.1                         |
| Cs      | 0.5                         |   | Sn      | 1                           |
| Cu      | 10                          |   | Sr      | 2                           |
| Dy      | 0.1                         |   | Та      | 0.1                         |
| Er      | 0.1                         |   | Tb      | 0.1                         |
| Eu      | 0.05                        |   | Th      | 0.1                         |
| Ga      | 1                           |   | TI      | 0.1                         |
| Gd      | 0.1                         |   | Tm      | 0.05                        |
| Ge      | 1                           |   | U       | 0.1                         |
| Hf      | 0.2                         |   | V       | 5                           |
| Ho      | 0.1                         |   | W       | 1                           |
| In      | 0.2                         | 1 | Y       | 2                           |
| La      | 0.1                         | 1 | Yb      | 0.1                         |
| Lu      | 0.04                        | 1 | Zn      | 30                          |
| Мо      | 2                           | 1 | Zr      | 4                           |
| Nb      | 1                           |   |         |                             |

 Table 11.1
 REE Assay Package Major Elements (Actlabs Code 8)





| Oxide                              | Detection Limit<br>(%)   |
|------------------------------------|--------------------------|
| SiO <sub>2</sub>                   | 0.01                     |
| Al <sub>2</sub> O <sub>3</sub>     | 0.01                     |
| Fe <sub>2</sub> O <sub>3</sub> (T) | 0.01                     |
| MgO                                | 0.01                     |
| MnO                                | 0.001                    |
| CaO                                | 0.01                     |
| TiO <sub>2</sub>                   | 0.001                    |
| Na <sub>2</sub> O                  | 0.01                     |
| K <sub>2</sub> O                   | 0.01                     |
| P <sub>2</sub> O <sub>5</sub>      | 0.01                     |
| Loss on Ignition (LOI)             | 0.01                     |
| Element                            | Detection Limit<br>(ppm) |
| Ва                                 | 3                        |
| Ве                                 | 1                        |
| Sc                                 | 1                        |
| Sr                                 | 2                        |
| V                                  | 5                        |
| Y                                  | 2                        |
| Zr                                 | 4                        |

### Table 11.2 Whole Rock Analysis (Actlabs Code 4B WRA-ICP)





# 12.0 DATA VERIFICATION

# 12.1 DATABASE VERIFICATION

Tetra Tech performed an internal verification process of the Two Tom project database against the laboratory-issued assay certificates. The validation of the data was completed on nine of the drillholes, representing 975 of the 2,503 total assays, and therefore accounting for approximately 39% of the dataset. Holes included in the verification process are as follows: TT-01, TT-03, TT-09, TT-10, TT-13, TT-18, TT-20, and TT-21.

The data verification process examined certificate ID, sample number, and all elemental analyses. No sample number or assay value errors were discovered within the database; however the 84 samples taken from TT-13 were attributed to the incorrect assay certificate ID. For samples 988723 to 988815, the database entry listed the certificate as A11-6265final, whereas the results were actually within certificate A11-6809final. Corrections were made to the database and this represents 8.62% of the certificate id dataset set.

The drillhole data set was imported into the Gemcom GEMS<sup>™</sup> program and validated. Validation checks for duplicate intervals, overlapping intervals, and intervals beyond the end of the hole. No errors were identified within the routine.

Tetra Tech also conducted verification on the calculated oxides of the REEs. All REOs were calculated from the assay values, given in parts per million (ppm), by multiplying by the molecular weight of the REE. There were no errors in the conversion of the REE in ppm to their associated oxides. Niobium was reported as  $Nb_2O_5$  from Actlabs and did not require a conversion factor. Table 12.1 shows the conversion factors used in the database.





| Element      | Element<br>Acronym | Common<br>Oxides               | Oxide<br>Conversion Factor |
|--------------|--------------------|--------------------------------|----------------------------|
| Niobium      | Nb                 | Nb <sub>2</sub> O <sub>5</sub> | 1.431                      |
| Beryllium    | Be                 | BeO                            | 2.775                      |
| Thorium      | Th                 | ThO <sub>2</sub>               | 1.138                      |
| Lanthanum    | La                 | La <sub>2</sub> O <sub>3</sub> | 1.173                      |
| Cerium       | Ce                 | Ce <sub>2</sub> O <sub>3</sub> | 1.171                      |
| Praseodymium | Pr                 | Pr <sub>2</sub> O <sub>3</sub> | 1.170                      |
| Neodymium    | Nd                 | Nd <sub>2</sub> O <sub>3</sub> | 1.166                      |
| Samarium     | Sm                 | Sm <sub>2</sub> O <sub>3</sub> | 1.160                      |
| Europium     | Eu                 | Eu <sub>2</sub> O <sub>3</sub> | 1.158                      |
| Gadolinium   | Gd                 | $Gd_2O_3$                      | 1.153                      |
| Terbium      | Tb                 | Tb <sub>2</sub> O <sub>3</sub> | 1.151                      |
| Dysprosium   | Dy                 | Dy <sub>2</sub> O <sub>3</sub> | 1.148                      |
| Holmium      | Ho                 | Ho <sub>2</sub> O <sub>3</sub> | 1.146                      |
| Erbium       | Er                 | Er <sub>2</sub> O <sub>3</sub> | 1.143                      |
| Thulium      | Tm                 | Tm <sub>2</sub> O <sub>3</sub> | 1.142                      |
| Ytterbium    | Yb                 | Yb <sub>2</sub> O <sub>3</sub> | 1.139                      |
| Lutetium     | Lu                 | Lu <sub>2</sub> O <sub>3</sub> | 1.137                      |
| Yttrium      | Y                  | Y <sub>2</sub> O <sub>3</sub>  | 1.270                      |

#### Table 12.1 List of Element to Oxide Conversion Factors

# 12.2 SITE VISIT, JULY 2011

The site visit was conducted by Mr. Paul Daigle, Senior Geologist for Tetra Tech, between July 17 and 20, 2011. Both the Project site and exploration camp were visited on July 19, 2011. Mr. Daigle was accompanied by Glen Penney, Project Geologist for REM.

Access to site was by regular scheduled flight to Happy Valley-Goose Bay. A helicopter was chartered out of Goose Bay to reach REM's base camp. On July 18, an attempt to reach the camp was made; however, due to inclement weather the attempt was aborted. On July 19, the author was flown to REM's base camp. Flight time was approximately 1.25 h.

The base camp is located at a gravel quarry on the Orma Lake Road, an access road maintained by the Churchill Falls hydro company for access to the Smallwood Reservoir. The camp is accessible by road and requires two hours to reach Churchill Falls and an additional four hours to Happy Valley-Goose Bay.

#### DRILL CORE LOGGING AND SAMPLING

The drill core is logged and sampled at the base camp. A purpose designed tent has been set up with core logging tables and a core sampling area where the pneumatic





core splitter is set up. The standards and blank reference materials are also stored in this facility.

DRILL CORE STORAGE

The drill core is stored at the base camp, in open boxes, on sturdy constructed core storage racks. The drill core boxes are in good condition and are still clearly labelled with aluminium tags.

### Two Tom Project Site

The Two Tom Project site is located approximately 60 km northeast of the base camp and is only accessible by helicopter. The flight to the Project site is typically 15 to 20 minutes.

The project site is moderately to thickly-forested with low to moderate relief. The majority of the area is covered in caribou moss, and low shrubs. Low lying areas are generally water saturated and there are wetlands to the west of drillhole TT-18. The higher elevations are generally drier with gentle slopes and thin overburden. Rock exposure is minimal in areas of the Property.

The author recorded ground positioning satellite (GPS) coordinates of the three channel sampling sites and ten diamond drill sites. The site inspection was conducted during REM's 2011 drill program. At the time of the visit, 14 drillholes had been completed and the drill was drilling at TT-15b Tetra Tech's GPS coordinates correlated well with REM's drill coordinates within a tolerance of 6 to 12 m.

The drill collars were clearly located, with the steel casing left in the drillhole and capped with an aluminium threaded cap. The drill sites, from both the 2010 and 2011 drill programs, were found to be clean of debris.

## 12.3 CHECK ASSAY SAMPLES

Independent check samples were collected during the site visit by Tetra Tech. Four samples were collected from the available drill core at the core storage site at REM's base camp.

The check sample intervals were selected randomly within the mineralized lithologies and spatially within the Two Tom deposit. The samples collected were from the same sample interval as REM's sample and taken by splitting the half core into quarters where one quarter was returned to the core box and the second quarter placed in a sample bag. The core splitting was supervised by Tetra Tech, placed in sample bags with a sample tag, labelled and sealed on site by Tetra Tech.

The samples were kept with the author at all times for the duration of the site visit and return to Toronto. Upon return to Toronto, the check samples were sent to ALS Canada Ltd. (ALS) in Sudbury, ON for analysis.





At ALS, sample preparation was by the same methods as Actlabs. The sample was crushed to up to 85% of the sample passing 2 mm screen, split and 250 g pulverized to 90% passing a 75  $\mu$ m screen (ALS code PREP-31). Analysis was conducted using a fusion and ICP-MS analysis method (ALS code: ME-MS81). For niobium, an additional trace level XRF analysis was carried out (ALS code: ME-XRF05).

The purpose of the check sample assays are to confirm indications of mineralization are not intended as duplicate or QA/QC samples. Tetra Tech check sample analysis correlates well with REM's assay results for the same sample intervals. That is, where elevated assay results were expected in the REM samples, the Tetra Tech samples returned similarly elevated assays results.

Tetra Tech is of the opinion that the analytical results have been confirmed and that they are adequate for purposes of this technical report.

Results of the check assay sample analysis and corresponding sample analysis by REM are shown in Table 12.2 and Table 12.3.

| Tetra Tech<br>Sample No. | REM<br>Sample No. | Drill<br>Hole | Sample Interval<br>(m) | Lithology        |
|--------------------------|-------------------|---------------|------------------------|------------------|
| 11140                    | 421377            | TT-04         | 100.5 – 102.0          | Sheared Syenite  |
| 11141                    | 421573            | TT-07         | 147.5 – 149.0          | Amphibole Gneiss |
| 11142                    | 421679            | TT-09         | 110.0 – 111.5          | Syenite          |
| 11143                    | 988705            | TT-13         | 110.5 – 112.0          | Amphibole Gneiss |

 Table 12.2
 Summary of Check Samples Collected by Tetra Tech





| Tetra Tech<br>Sample No. | Drillhole | Nb <sub>2</sub> O <sub>5</sub> % | Th   | La   | Ce   | Pr  | Nd   | Sm  | Eu   | Gd   | Tb   | Dy    | Но   | Er   | Tm   | Yb   | Lu  | Y    |
|--------------------------|-----------|----------------------------------|------|------|------|-----|------|-----|------|------|------|-------|------|------|------|------|-----|------|
| 11140                    | TT-04     | 1.09                             | 503  | 2400 | 4860 | 519 | 1790 | 376 | 43.8 | 281  | 28.7 | 108.0 | 13.2 | 22.2 | 2.2  | 8.9  | 0.9 | 379  |
| 11141                    | TT-07     | 0.19                             | 592  | 2440 | 4740 | 497 | 1685 | 296 | 33.3 | 223  | 26.7 | 116.0 | 16.0 | 31.2 | 3.2  | 13.7 | 1.4 | 494  |
| 11142                    | TT-09     | 0.29                             | 903  | 2190 | 5310 | 583 | 2040 | 405 | 41.4 | 241  | 21.2 | 70.4  | 7.6  | 11.4 | 1.0  | 3.1  | 0.3 | 245  |
| 11143                    | TT-13     | 0.30                             | 821  | 3090 | 5970 | 617 | 2030 | 342 | 39.5 | 253  | 30.6 | 133.5 | 18.9 | 37.8 | 4.0  | 17.9 | 2.0 | 561  |
| REM                      |           |                                  |      |      |      |     |      |     |      |      |      |       |      |      |      |      |     |      |
| Sample No.               |           |                                  |      |      |      |     |      |     |      |      |      |       |      |      |      |      |     |      |
| 421377                   | TT-04     | 1.127                            | 566  | 2310 | 4560 | 538 | 1870 | 377 | 36.9 | 244  | 24.4 | 88.0  | 10.1 | 18.3 | 1.8  | 8.2  | 0.9 | 345  |
| 421573                   | TT-07     | 0.192                            | 717  | 2990 | 5710 | 632 | 2020 | 341 | 32.5 | 221  | 26.8 | 111.0 | 15.2 | 30.5 | 3.2  | 14.7 | 1.4 | 516  |
| 421679                   | TT-09     | 0.267                            | 1050 | 2690 | 6180 | 679 | 2420 | 485 | 43.0 | 252  | 22.7 | 72.9  | 7.9  | 13.1 | 1.1  | 4.5  | 0.5 | 300  |
| 988705                   | TT-13     | 0.291                            | 892  | 3500 | 6650 | 708 | 2310 | 387 | 38.6 | 256  | 30.9 | 130.0 | 18.6 | 40.5 | 4.4  | 20.5 | 2.4 | 567  |
|                          | -         | 0.03%                            | 63   | -90  | -300 | 19  | 80   | 1   | -7   | -37  | -4   | -20   | -3   | -4   | 0    | -1   | 0   | -34  |
| Difference               | -         | 0.00%                            | 125  | 550  | 970  | 135 | 335  | 45  | -1   | -2   | 0    | -5    | -1   | -1   | 0    | 1    | 0   | 22   |
| (ppm)                    | -         | -0.02%                           | 147  | 500  | 870  | 96  | 380  | 80  | 2    | 11   | 2    | 3     | 0    | 2    | 0    | 1    | 0   | 55   |
|                          | -         | -0.01%                           | 71   | 410  | 680  | 91  | 280  | 45  | -1   | 3    | 0    | -4    | 0    | 3    | 0    | 3    | 0   | 6    |
|                          | -         | 3%                               | 11%  | -4%  | -7%  | 4%  | 4%   | 0%  | -19% | -15% | -18% | -23%  | -30% | -21% | -22% | -9%  | 0%  | -10% |
| Difference               | -         | 0%                               | 17%  | 18%  | 17%  | 21% | 17%  | 13% | -2%  | -1%  | 0%   | -5%   | -5%  | -2%  | -2%  | 7%   | -1% | 4%   |
| (%)                      | -         | -9%                              | 14%  | 19%  | 14%  | 14% | 16%  | 16% | 4%   | 4%   | 7%   | 3%    | 4%   | 13%  | 17%  | 32%  | 33% | 18%  |
|                          | -         | -2%                              | 8%   | 12%  | 10%  | 13% | 12%  | 12% | -2%  | 1%   | 1%   | -3%   | -1%  | 7%   | 7%   | 13%  | 17% | 1%   |

## Table 12.3 Comparison of Assay Results for REEs

Note: All assay values are in ppm unless otherwise stated.



# 13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

In March 2011, test work on two composite REE samples from the Red Wine Property were conducted by SGS Mineral Services of Lakefield, Ontario via High Definition Mineralogy Analysis. The composite samples were taken from REM's Two Tom (sample name: Two Tom-01) and Mann #1 (sample name: Mann#1-4) Projects. A summary of the results of this test work is taken from SGS (2011) below.

It is not within the scope of this report to undergo a detailed review of the results of the mineralogical test work. Results with regards to metallurgical recoveries, summarized below, are preliminary in nature and were obtained prior to the 2011 drill program. The metallurgical recoveries were not applied to the current resource estimate.

### 13.1.1 MODAL MINERALOGY

The mineralogical examination of the samples was carried out with X-ray diffraction (XRD), QEMSCAN<sup>™</sup>, electron microprobe, electron microscopy and chemical analysis. The purpose of this test program was to determine the overall mineral assemblage and the liberation/association of the REE-bearing minerals.

Results from the testwork suggest that the LREEs and HREEs at the Two Tom deposit are concentrated in monazite and a cerium-calcium silicate. The main REE-bearing phases include:

- monazite (1.2%)
- cerium-calcium silicate (1.1%)
- niobophyllite (0.2%)
- pyrochlore (0.1%)
- barium silicate (3.2%)
- apatite (0.3%)
- synchysite/bastnäsite (0.2%)
- thorium-calcium silicate (0.2%)
- zircon (0.1%)

## 13.1.2 ELEMENTAL DEPORTMENT

The elemental distribution of several individual REEs (La, Ce, Pr, Nd, Sm, Dy, Y) are calculated based on the mineral mass per size fraction and average values from the electron microprobe analyses. It was found that monazite and cerium-calcium silicate hosts the majority of:





- La ~73% (~58% in monazite and 15% in the cerium-calcium silicates, respectively)
- Ce ~66% (~41% and 25%, respectively)
- Pr ~82% (~36% and 46%, respectively)
- Nd ~86% (~34% and 54%, respectively).

It also found that the cerium-calcium silicate hosts the majority of:

- Sm ~89%
- Gd ~90%
- Dy ~98%
- Y ~96%.

Pyrochlore and niobophyllite host the majority of the niobium (~48% and ~26%, respectively).

### 13.1.3 LIBERATION AND ASSOCIATION

MONAZITE LIBERATION AND ASSOCIATION FOR THE TWO TOM-01

Free and liberated monazite accounts for 36.8%. The main association of monazite is as complex particles (43.6%), middling particles with quartz/feldspars (9.7%) and other silicates (8.2%). Similarly to the monazite in the Mann#1-04 sample, free and liberated monazite is relatively low in the +25  $\mu$ m fractions (<14%) and increase significantly in the -25  $\mu$ m fraction at ~62%.

Free and liberated monazite occurs in greater abundance in the <50  $\mu m$  size classes.

CERIUM-CALCIUM SILICATES LIBERATION AND ASSOCIATION FOR TWO TOM-01

Free and liberated cerium-calcium silicates account for 19.5%. The main association of cerium-calcium silicates is as complex particles (64.6%), middling particles with other silicates (7.0%) and quartz/feldspars (6.4%).

Free and liberated cerium-calcium silicates are below 13% in the +25  $\mu$ m fractions and increase substantially only in the -25  $\mu$ m fraction to ~35%. Most liberated cerium-calcium silicates occur below <50  $\mu$ m.

Free and liberated Ba silicates occur in greater abundance in the <100  $\mu m$  size classes.





### BARIUM SILICATES LIBERATION AND ASSOCIATION FOR TWO TOM-01

Free and liberated barium silicates account for 64.7%. The main association of Barium silicates is as complex particles (22.2%), middling particles with other silicates (6.7%) and quartz/feldspars (5.3%). Free and liberated barium silicates increase with decreasing particle size from 16% to ~76%.

Free and liberated barium silicates occur in greater abundance in the <100  $\mu m$  size classes.

### NIOBOPHYLLITE LIBERATION AND ASSOCIATION FOR TWO TOM-01

Free and liberated niobophyllite accounts for 9.8%. The main association of niobophyllite is as complex particles (61.1%), and middling particles with other silicates (19.5%), other sulphides (3.1%) quartz/feldspars (3.0%). Liberation of niobophyllite increases to only 18% in the -25  $\mu$ m fraction. Most of the liberated niobophyllite occurs in greater abundance below <50  $\mu$ m.

### 13.1.4 MINERAL RELEASE

For the Two Tom-01, liberation of the monazite ranges from 3 to 14% to 9 to 62% for 381  $\mu$ m, 106  $\mu$ m, 43  $\mu$ m to 9  $\mu$ m, respectively; that for cerium-calcium silicates from nil to 2% to 13 to 35%; barium silicates from 16 to 50% to 65 to 76%, niobophyllite from nil to 2 to 6% to 18%; thorium-calcium silicates from nil in the two coarse fractions to 15 to 10%, for the same sizes, respectively.

### 13.1.5 GRADE RECOVERY

#### Monazite

The grade recovery curve representing the whole Two Tom-01 sample indicates monazite grades between 96% and 68% for monazite recoveries of 30 to 68%, respectively. The best grades and recoveries are projected for the finest fraction (-25  $\mu$ m), at 97 to 79% monazite grades and 50 to 86% monazite recoveries, respectively.

#### CERCIUM-CALCIUM SILICATES

The grade recovery curve representing the Two Tom-01 sample indicates ceriumcalcium silicate grades between 89% and 47% for cerium-calcium silicate recoveries of 4 to 64%, respectively. The best grades and recoveries are projected for the finest fraction (-25  $\mu$ m), at 92 to 51%.





# 14.0 MINERAL RESOURCE ESTIMATES

This section discloses a new resource estimate for the Two Tom REE deposit, prepared in accordance with the CIM Best Practices and disclosed in accordance with NI 43-101. The effective date of this resource estimate is December 10, 2011.

This resource estimate has been prepared using two interpreted domains. A cut-off grade of 0.6 TREO% was chosen for the REE deposit resource estimate based on cut-off grades from comparable REE deposits, specifically that of the B zone REE deposit, in the Strange Lake area. Tetra Tech considers this TREO% cut-off to be reasonable.

### 14.1.1 DATABASE

REM supplied all of the digital data for the resource estimate update. This data was compiled from the assay analyses, which came directly to REM from ALS Laboratories in Microsoft Excel<sup>®</sup> format. The data was verified and imported into Gemcom GEMS<sup>™</sup> version 6.3.0.1 Resource Evaluation Edition.

The entire drillhole dataset included the header, survey, assay and lithology files for 24 drillholes totalling 5,518.65 m of diamond drilling; and four channel samples totalling 38.20 m and consists of 2,666 assay values. Out of the 24 drillholes, 23 drillholes intersect the mineralized deposit were used for the resource estimate, as well as the four trenches. The dataset used for the resource estimate consisted of 2,637 assay values that intersect the mineralized deposit.

A manual check on the database was made on new drill data from the 2011 drill program to search for obvious errors, such as negative values and overlapping sample intervals, prior to statistical treatments. No errors were found in the database.

### 14.1.2 SPECIFIC GRAVITY

REM conducted bulk density measurements on six lithology types from 17 drillholes, where two of the lithology types were grouped together. A total of 1404 readings were recorded and range from 2.44 to 3.35 g/cm<sup>3</sup>. The density values were recorded into specific sample intervals that coincided with the sample intervals and were imported into the GEMS database and were assigned to one of the two domains of the Two Tom deposit. Densities were estimated into the blocks by Inverse Distance Squared (ID) into the block model. Overall, the SG values range from 2.20 to 3.08 g/cm<sup>3</sup>.





# 14.2 EXPLORATORY DATA ANALYSIS

Exploratory data analysis is the application of various statistical tools to explain the characteristics of the data set. In this case, the objective is to understand the population distribution of the grade elements through the use of such tools as histograms, descriptive statistics and probability plots.

### 14.2.1 RAW ASSAYS

Raw assay statistics for the grades which intersect the deposit are shown in Table 14.1. Only those values greater than zero were used in the statistical analysis. A summary of descriptive statistics for all metals by domain may be found in Appendix B.

|                         | Length | TREO% | Nb <sub>2</sub> O <sub>5</sub> % | BeO%  | ThO₂% |
|-------------------------|--------|-------|----------------------------------|-------|-------|
| Count                   | 2647   | 2647  | 2647                             | 2645  | 2645  |
| Minimum                 | 0.400  | 0.002 | 0.001                            | 0.000 | 0.001 |
| Maximum                 | 6.000  | 3.804 | 2.507                            | 1.423 | 1.959 |
| Mean                    | 1.522  | 0.227 | 0.144                            | 0.049 | 0.215 |
| Standard Deviation      | 0.188  | 0.302 | 0.166                            | 0.064 | 0.212 |
| Variance                | 0.035  | 0.091 | 0.027                            | 0.004 | 0.045 |
| Coefficient of Variance | 0.124  | 1.333 | 1.154                            | 1.300 | 0.988 |

#### Table 14.1 Raw Assay Statistics (No Zeroes) for TREO% and Metal Oxides



|                         | La <sub>2</sub> O <sub>3</sub> % | Ce <sub>2</sub> O <sub>3</sub> % | Pr <sub>2</sub> O <sub>3</sub> % | Nd <sub>2</sub> O <sub>3</sub> % | Sm <sub>2</sub> O <sub>3</sub> % | Eu <sub>2</sub> O <sub>3</sub> % | Gd <sub>2</sub> O <sub>3</sub> % | Tb <sub>2</sub> O <sub>3</sub> % | Dy <sub>2</sub> O <sub>3</sub> % | Ho <sub>2</sub> O <sub>3</sub> % | Er <sub>2</sub> O <sub>3</sub> % | Tm <sub>2</sub> O <sub>3</sub> % | Yb <sub>2</sub> O <sub>3</sub> % | Lu <sub>2</sub> O <sub>3</sub> % | Y <sub>2</sub> O <sub>3</sub> % |
|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|
| Count                   | 2645                             | 2645                             | 2645                             | 2645                             | 2645                             | 2644                             | 2645                             | 2645                             | 2645                             | 2645                             | 2645                             | 2645                             | 2645                             | 2644                             | 2645                            |
| Minimum                 | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.001                           |
| Maximum                 | 1.959                            | 3.209                            | 0.296                            | 0.837                            | 0.159                            | 0.013                            | 0.077                            | 0.007                            | 0.026                            | 0.005                            | 0.013                            | 0.002                            | 0.009                            | 0.001                            | 0.169                           |
| Mean                    | 0.215                            | 0.411                            | 0.043                            | 0.145                            | 0.025                            | 0.002                            | 0.015                            | 0.002                            | 0.006                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.031                           |
| Standard Deviation      | 0.212                            | 0.377                            | 0.038                            | 0.122                            | 0.020                            | 0.002                            | 0.012                            | 0.001                            | 0.005                            | 0.001                            | 0.001                            | 0.000                            | 0.001                            | 0.000                            | 0.022                           |
| Variance                | 0.045                            | 0.142                            | 0.001                            | 0.015                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                           |
| Coefficient of Variance | 0.988                            | 0.917                            | 0.881                            | 0.841                            | 0.782                            | 0.754                            | 0.747                            | 0.717                            | 0.703                            | 0.698                            | 0.694                            | 0.710                            | 0.706                            | 0.721                            | 0.699                           |

 Table 14.2
 Summary of Raw Assay Statistics for the REOs; All Lithologies

Table 14.3Summary of Raw Assay Statistics for Syenite Porphyry Lithologies; Rock Codes 100, 101, 102, 103, 104, 111 and 112

|                         | La <sub>2</sub> O <sub>3</sub> % | Ce <sub>2</sub> O <sub>3</sub> % | Pr <sub>2</sub> O <sub>3</sub> % | Nd <sub>2</sub> O <sub>3</sub> % | Sm <sub>2</sub> O <sub>3</sub> % | Eu <sub>2</sub> O <sub>3</sub> % | Gd <sub>2</sub> O <sub>3</sub> % | Tb <sub>2</sub> O <sub>3</sub> % | Dy <sub>2</sub> O <sub>3</sub> % | Ho <sub>2</sub> O <sub>3</sub> % | Er <sub>2</sub> O <sub>3</sub> % | Tm <sub>2</sub> O <sub>3</sub> % | Yb <sub>2</sub> O <sub>3</sub> % | Lu <sub>2</sub> O <sub>3</sub> % | Y <sub>2</sub> O <sub>3</sub> % |
|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|
| Count                   | 1772                             | 1772                             | 1772                             | 1772                             | 1772                             | 1771                             | 1772                             | 1772                             | 1772                             | 1772                             | 1772                             | 1772                             | 1772                             | 1772                             | 1772                            |
| Minimum                 | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.001                           |
| Maximum                 | 1.959                            | 3.209                            | 0.296                            | 0.837                            | 0.159                            | 0.013                            | 0.077                            | 0.007                            | 0.026                            | 0.005                            | 0.013                            | 0.002                            | 0.009                            | 0.001                            | 0.169                           |
| Mean                    | 0.150                            | 0.298                            | 0.032                            | 0.109                            | 0.020                            | 0.002                            | 0.012                            | 0.001                            | 0.005                            | 0.001                            | 0.001                            | 0.000                            | 0.001                            | 0.000                            | 0.024                           |
| Standard Deviation      | 0.190                            | 0.340                            | 0.034                            | 0.112                            | 0.019                            | 0.002                            | 0.011                            | 0.001                            | 0.004                            | 0.001                            | 0.001                            | 0.000                            | 0.001                            | 0.000                            | 0.019                           |
| Variance                | 0.036                            | 0.116                            | 0.001                            | 0.013                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                           |
| Coefficient of Variance | 1.260                            | 1.142                            | 1.085                            | 1.025                            | 0.938                            | 0.888                            | 0.884                            | 0.830                            | 0.794                            | 0.774                            | 0.772                            | 0.799                            | 0.788                            | 0.798                            | 0.784                           |

| Table 14.4 Summa | v of Raw Assa | v Statistics for Am | phibole Gneiss Litholo | qies | : Rock Codes 401 | , 402, and 403 |
|------------------|---------------|---------------------|------------------------|------|------------------|----------------|
|                  |               |                     |                        |      |                  | 1 - 1          |

|                         | La <sub>2</sub> O <sub>3</sub> % | Ce <sub>2</sub> O <sub>3</sub> % | Pr <sub>2</sub> O <sub>3</sub> % | Nd <sub>2</sub> O <sub>3</sub> % | Sm <sub>2</sub> O <sub>3</sub> % | Eu <sub>2</sub> O <sub>3</sub> % | Gd <sub>2</sub> O <sub>3</sub> % | Tb <sub>2</sub> O <sub>3</sub> % | Dy <sub>2</sub> O <sub>3</sub> % | Ho <sub>2</sub> O <sub>3</sub> % | Er <sub>2</sub> O <sub>3</sub> % | Tm <sub>2</sub> O <sub>3</sub> % | Yb <sub>2</sub> O <sub>3</sub> % | Lu <sub>2</sub> O <sub>3</sub> % | Y <sub>2</sub> O <sub>3</sub> % |
|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|
| Count                   | 792                              | 792                              | 792                              | 792                              | 792                              | 792                              | 792                              | 792                              | 792                              | 792                              | 792                              | 792                              | 792                              | 791                              | 792                             |
| Minimum                 | 0.015                            | 0.029                            | 0.003                            | 0.012                            | 0.002                            | 0.000                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.006                           |
| Maximum                 | 0.972                            | 1.557                            | 0.166                            | 0.587                            | 0.130                            | 0.012                            | 0.069                            | 0.006                            | 0.022                            | 0.004                            | 0.009                            | 0.001                            | 0.005                            | 0.001                            | 0.122                           |
| Mean                    | 0.378                            | 0.698                            | 0.071                            | 0.236                            | 0.039                            | 0.004                            | 0.024                            | 0.003                            | 0.010                            | 0.001                            | 0.003                            | 0.000                            | 0.001                            | 0.000                            | 0.049                           |
| Standard Deviation      | 0.176                            | 0.302                            | 0.030                            | 0.094                            | 0.015                            | 0.001                            | 0.009                            | 0.001                            | 0.004                            | 0.001                            | 0.001                            | 0.000                            | 0.001                            | 0.000                            | 0.019                           |
| Variance                | 0.031                            | 0.091                            | 0.001                            | 0.009                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                            | 0.000                           |
| Coefficient of Variance | 0.465                            | 0.433                            | 0.416                            | 0.396                            | 0.387                            | 0.372                            | 0.367                            | 0.359                            | 0.365                            | 0.389                            | 0.410                            | 0.445                            | 0.462                            | 0.479                            | 0.379                           |

Rare Earth Metals Inc.

Resource Estimate and Technical Report for the Two Tom REE Deposit of the Red Wine Complex Labrador, Canada





## 14.2.2 CAPPING

Cumulative probability plots and descriptive statistics were used to assess the need for capping of metal oxide and REO assays. Typically, a step-change in the profile or a separation of the data points is present if there are different populations in the dataset. High value outliers will show up in the last few percent of a cumulative probability plot (typically in the 97 to 100% range) and the break in the probability distribution may be selected to set a capping level.

Figure 14.1 and Figure 14.3 show examples of the histogram and cumulative frequency plots for the raw uncapped  $Nb_2O_5\%$  and  $La_2O_3\%$  data for all lithologies.

Figure 14.1 and Figure 14.3 show examples of the histogram and cumulative frequency plots for the raw uncapped Nb<sub>2</sub>O<sub>5</sub>% data for the syenite porphyry lithologies and amphibole gneiss lithologies respectively. Figure 14.2 and Figure 14.4 show examples of the histogram and cumulative frequency plots for the raw uncapped La<sub>2</sub>O<sub>3</sub>% data for the syenite porphyry lithologies and amphibole gneiss lithologies respectively.

Histogram and cumulative frequency plots for all metal oxides may be found in Appendix C.





# Figure 14.1 Histogram and Cumulative Probability Plots for Nb<sub>2</sub>O<sub>5</sub>% (Rock Code 100 series)

















# Figure 14.3 Histogram and Cumulative Probability Plot for La<sub>2</sub>O<sub>3</sub>% (Rock Code 100 series)







Figure 14.4 Histogram and Cumulative Probability Plot for La<sub>2</sub>O<sub>3</sub>% (Rock Code 400 series)





Assay data for the REOs and the metal oxides were analyzed by syenite porphyry and amphibole gneiss lithology groups (rock code series 100 and 400) and examined separately. Capping values were assessed for Nb<sub>2</sub>O<sub>5</sub>%, BeO, ThO<sub>2</sub>, U<sub>3</sub>O<sub>8</sub> and the 15 REOs for the two lithological groups. Table 14.5 below summarizes the capping levels for each metal oxide by lithology group and the number of affected assay values.

|                                  | Syeni           | te Porphyry                         | Amphi           | bole Gneiss                         |
|----------------------------------|-----------------|-------------------------------------|-----------------|-------------------------------------|
| Oxide or<br>Element              | Capped<br>Value | Number of<br>Assay Values<br>Capped | Capped<br>Value | Number of<br>Assay Values<br>Capped |
| $Nb_2O_5\%$                      | 2.10            | 7                                   | 1.30            | 5                                   |
| BeO%                             | 0.90            | 6                                   | 0.80            | 4                                   |
| ThO <sub>2</sub> %               | 0.45            | 11                                  | 0.20            | 3                                   |
| $U_3O_8\%$                       | -               | -                                   | -               | -                                   |
| $La_2O_3\%$                      | 1.00            | 10                                  | 0.90            | 2                                   |
| $Ce_2O_3\%$                      | 1.60            | 7                                   | 1.50            | 4                                   |
| $Pr_2O_3\%$                      | 0.17            | 3                                   | 0.15            | 3                                   |
| $Nd_2O_3\%$                      | 0.52            | 5                                   | 0.50            | 4                                   |
| $Sm_2O_3\%$                      | 0.09            | 6                                   | 0.09            | 6                                   |
| $Eu_2O_3\%$                      | 0.009           | 5                                   | 0.008           | 6                                   |
| $Gd_2O_3\%$                      | 0.052           | 5                                   | 0.048           | 6                                   |
| $Tb_2O_3\%$                      | -               | -                                   | -               | -                                   |
| $Dy_2O_3\%$                      | 0.02            | 4                                   | -               | -                                   |
| $Ho_2O_3\%$                      | -               | -                                   | -               | -                                   |
| $Er_2O_3\%$                      | -               | -                                   | -               | -                                   |
| $Tm_2O_3\%$                      | -               | -                                   | -               | -                                   |
| Yb <sub>2</sub> O <sub>3</sub> % | -               | -                                   | -               | -                                   |
| $Lu_2O_3\%$                      | -               | -                                   | -               | -                                   |
| $Y_2O_3\%$                       | 0.09            | 6                                   | 0.1             | 3                                   |

### Table 14.5 Summary of Capping Levels

Note: '-' indicates no capping applied

For comparison of the overall effect of capping of raw data, Table 14.6 shows statistical comparison on the raw and capped data for  $La_2O_3$ %, for the entire dataset used in the resource estimate and by domain. A summary of descriptive statistics for all capped REO and metal oxide data may be found in Appendix D.





|                         | · · · · · · · · · · · · · · · · · · · |                  |                                              |                  |
|-------------------------|---------------------------------------|------------------|----------------------------------------------|------------------|
|                         | Nb₂O₅%<br>Uncapped                    | Nb₂O₅%<br>Capped | La <sub>2</sub> O <sub>3</sub> %<br>Uncapped | La₂O₃%<br>Capped |
| All Lithologies         |                                       |                  |                                              |                  |
| Count                   | 2647                                  | 2647             | 2645                                         | 2645             |
| Minimum                 | 0.002                                 | 0.002            | 0.001                                        | 0.001            |
| Maximum                 | 3.804                                 | 2.100            | 1.959                                        | 1.000            |
| Mean                    | 0.227                                 | 0.224            | 0.215                                        | 0.214            |
| Variance                | 0.302                                 | 0.283            | 0.212                                        | 0.210            |
| Standard Deviation      | 0.091                                 | 0.080            | 0.045                                        | 0.044            |
| Coefficient of Variance | 1.333                                 | 1.263            | 0.988                                        | 0.978            |
| Syenite Porphyry        |                                       |                  |                                              |                  |
| Count                   | 1774                                  | 1774             | 1772                                         | 1772             |
| Minimum                 | 0.002                                 | 0.002            | 0.001                                        | 0.001            |
| Maximum                 | 3.804                                 | 2.100            | 1.959                                        | 1.000            |
| Mean                    | 0.218                                 | 0.215            | 0.150                                        | 0.150            |
| Variance                | 0.327                                 | 0.306            | 0.190                                        | 0.185            |
| Standard Deviation      | 0.107                                 | 0.093            | 0.036                                        | 0.034            |
| Coefficient of Variance | 1.503                                 | 1.423            | 1.260                                        | 1.235            |
| Amphibole Gneiss        |                                       |                  |                                              |                  |
| Count                   | 792                                   | 792              | 792                                          | 792              |
| Minimum                 | 0.020                                 | 0.020            | 0.015                                        | 0.015            |
| Maximum                 | 2.210                                 | 1.300            | 0.972                                        | 0.900            |
| Mean                    | 0.266                                 | 0.263            | 0.378                                        | 0.378            |
| Variance                | 0.246                                 | 0.230            | 0.176                                        | 0.175            |
| Standard Deviation      | 0.061                                 | 0.053            | 0.031                                        | 0.031            |
| Coefficient of Variance | 0.926                                 | 0.877            | 0.465                                        | 0.464            |

#### Table 14.6Comparison of Capped and Uncapped Nb2O5% and La2O3%

## 14.2.3 COMPOSITES

In the Gemcom GEMS<sup>™</sup> project, the table "3MCOMP", and the point area "3mComps" were created for composited point data that includes both capped and raw 3.0 m composite data.

Table 14.7 shows the descriptive statistics for the assay sample lengths of the entire raw data set for the Two Tom deposit. It was decided that a 3.0 m composite length would maintain a sufficient sample population for estimating the block model.

 Table 14.7
 Statistics on the Assay Sample Lengths of the Raw Data

|            | Count | Minimum | Maximum | Average | Standard Deviation |
|------------|-------|---------|---------|---------|--------------------|
| Length (m) | 2647  | 0.40    | 6.00    | 1.52    | 0.19               |





A total of 1,125 composite samples were created constrained to the solid intersections of the two domains as described in Section 14.3 below. A total of 421 composites lie within the north domain and 704 in the south domain. All composited data was used in the interpolation of the Two Tom deposit.

As an example for comparison of the overall effect of capping levels, Table 14.8 shows statistical comparison for the 3.0 m composites on the all raw and capped data for  $La_2O_3\%$  and  $Nb_2O_5\%$ , and by mineralized lithology. A detailed list of the raw and capped 3.0 m composite data is found in Appendix E.

|                         | Nb₂O₅%<br>Uncapped | Nb₂O₅%<br>Capped | La <sub>2</sub> O <sub>3</sub> %<br>Uncapped | La₂O₃%<br>Capped |  |  |  |  |  |
|-------------------------|--------------------|------------------|----------------------------------------------|------------------|--|--|--|--|--|
| All Lithologies         |                    |                  |                                              |                  |  |  |  |  |  |
| Count                   | 1125               | 1125             | 1125                                         | 1125             |  |  |  |  |  |
| Minimum                 | 0.005              | 0.005            | 0.002                                        | 0.002            |  |  |  |  |  |
| Maximum                 | 2.336              | 1.833            | 1.410                                        | 0.966            |  |  |  |  |  |
| Mean                    | 0.247              | 0.245            | 0.248                                        | 0.247            |  |  |  |  |  |
| Variance                | 0.069              | 0.064            | 0.041                                        | 0.040            |  |  |  |  |  |
| Standard Deviation      | 0.263              | 0.253            | 0.202                                        | 0.199            |  |  |  |  |  |
| Coefficient of Variance | 1.064              | 1.034            | 0.815                                        | 0.807            |  |  |  |  |  |
| Syenite Porphyry        |                    |                  |                                              |                  |  |  |  |  |  |
| Count                   | 711                | 711              | 711                                          | 711              |  |  |  |  |  |
| Minimum                 | 0.005              | 0.005            | 0.002                                        | 0.002            |  |  |  |  |  |
| Maximum                 | 2.336              | 1.833            | 1.410                                        | 0.966            |  |  |  |  |  |
| Mean                    | 0.241              | 0.239            | 0.180                                        | 0.179            |  |  |  |  |  |
| Variance                | 0.290              | 0.281            | 0.187                                        | 0.182            |  |  |  |  |  |
| Standard Deviation      | 0.084              | 0.079            | 0.035                                        | 0.033            |  |  |  |  |  |
| Coefficient of Variance | 1.205              | 1.175            | 1.040                                        | 1.021            |  |  |  |  |  |
| Amphibole Gneiss        |                    |                  |                                              |                  |  |  |  |  |  |
| Count                   | 398                | 398              | 398                                          | 398              |  |  |  |  |  |
| Minimum                 | 0.022              | 0.022            | 0.016                                        | 0.016            |  |  |  |  |  |
| Maximum                 | 1.421              | 1.246            | 0.862                                        | 0.862            |  |  |  |  |  |
| Mean                    | 0.266              | 0.263            | 0.378                                        | 0.378            |  |  |  |  |  |
| Variance                | 0.205              | 0.195            | 0.160                                        | 0.160            |  |  |  |  |  |
| Standard Deviation      | 0.042              | 0.038            | 0.026                                        | 0.026            |  |  |  |  |  |
| Coefficient of Variance | 0.772              | 0.739            | 0.424                                        | 0.423            |  |  |  |  |  |

# Table 14.8 Comparison of Capped and Uncapped Nb<sub>2</sub>O<sub>5</sub>% and La<sub>2</sub>O<sub>3</sub>% 3.0 m Composite Data

# 14.3 GEOLOGICAL INTERPRETATION

Interpretation of the Two Tom REE deposit, based on current drill data, appears to have the form of an arc. The interpreted mineralization forms an arc extending to the northwest and to the south-southeast along a trend approximately 1,100 m along





strike. The mineralized lithological units appear confined mainly to the syenite porphyry and amphibole gneiss. Both units appear to have a moderate to steep dip to the east-northeast.

Drilling to date appears to have outlined two main domains of the mineralization; one in the north and one to the south. The mineralization in the north domain is almost entirely contributed by the syenite porphyry. The drillhole fences are 100 m apart but show a strong continuity over 300 m. Moving to the east, the syenite porphyry is lost in the subsequent drill fence (TT-06 and TT-09), however, another REE mineralized body appears farther down dip. There is currently not enough data to show a continuity of the mineralization from the north to the south domain. The south domain appears to contain both mineralized syenite porphyry and amphibole gneiss lithologies and shows an inferred continuity over a length of 900 m.

Within these to domains, and over the wide drill sections, the mineralization appears varied between lithologies. It was decided that a gradeshell of 0.5 TREO% was the best method to capture and constrain the mineralized lithologies within these two domains. Three-dimensional (3D) polylines were created perpendicular to the trend of both domains and connected by tielines to create the north and south domains. An area of influence of up to 50 m from the drillhole was applied in creating the gradeshells.

Rock codes were established for the main lithologies and the two domains. All rock codes and domain codes are summarized in Table 14.9

| Description                                                | Rock Code | Rock Type | Domain |
|------------------------------------------------------------|-----------|-----------|--------|
| Air                                                        | AIR       | 0         |        |
| Water                                                      | WATER     | 1         |        |
| Syenite Porphyry                                           | 1SY-P     | 101       |        |
| Sheared Syenite Porphyry                                   | 1SY-P-S   | 102       |        |
| Syenite                                                    | 1SY       | 103       |        |
| Microsyenite                                               | 1SY-M     | 104       |        |
| Muscovite (sericite) Schist / Sericitized Syenite Porphyry | 1MS       | 111       |        |
| Actinolitic Amphibole Schist                               | 1AAS      | 112       |        |
| Amphibole Schist                                           | 3AS       | 301       |        |
| Biotite Schist with amph/pyxn layers                       | 3BS       | 302       |        |
| Biotite Amphibole Schist                                   | 3BAS      | 311       |        |
| Sheared and Altered Syenite Porphyry                       | 4SYP      | 401       |        |
| Amphibole Gneiss                                           | 4AG       | 402       |        |
| Banded Amphibole Gneiss                                    | 4BAG      | 403       |        |
| Feldspar Quartz Porphyry                                   | 7FQP      | 701       |        |
| Northwest Domain                                           |           | GS_N      | 4001   |
| South Domain                                               |           | GS_S      | 4002   |

 Table 14.9
 List of Rock Codes and Wireframe Codes







Figure 14.5 and Table 14.6 illustrate the north and south domain wireframes.

Figure 14.5 Plan View of Two Tom Wireframes - North and South Domains

Note: Plan View; each square represents 200 m x 200 m.












## 14.4 BLOCK MODEL

A single block model was created to cover the interpreted Two Tom deposit. Table 14.10 and Figure 14.8 shows the Gemcom  $GEMS^{T}$  coordinates for the block model origins. A block size of 25 m x 25 m x 10 m was used for block model and resource estimate. The block size is considered reasonable where distances between drill fences are approximately 100 m.

| Table 1/ 10 | Block Coordinates for the Two Tom Block Model |
|-------------|-----------------------------------------------|
| Table 14.10 | Block Coordinates for the Two Tom Block Model |

|           | Minimum | Maximum | Number     |
|-----------|---------|---------|------------|
| Easting   | 555100  | 556300  | 48 columns |
| Northing  | 6007000 | 6008600 | 64 rows    |
| Elevation | 80      | 500     | 42 levels  |

### Figure 14.7 Block Model Origin for the Two Tom Block Model

| Block Workspace Prop | erties  |            | X      |
|----------------------|---------|------------|--------|
| Geometry Levels      |         |            |        |
| Workspace name:      | TT2011  |            |        |
| Number of blocks     |         | <br>       |        |
| Columns:             | 48      |            |        |
| Rows:                | 64      |            |        |
| Levels:              | 42      |            |        |
|                      |         |            |        |
|                      |         | Change     | Reset  |
| Origin and rotation  | 555100  |            |        |
| ×                    | 6007000 |            |        |
| Y:                   | 5007000 |            |        |
| Ζ:                   | 500     |            |        |
| Rotation:            | 0       |            |        |
|                      |         | Change     | Deset  |
| Block size           |         | <br>Change | Heset  |
| Column size:         | 25      |            |        |
| Row size:            | 25      |            |        |
| Level size:          | 10      |            |        |
|                      |         |            |        |
|                      |         | Change     | Reset  |
|                      |         | <br>       |        |
|                      |         | OK         | Cancel |





Drill spacing varies between 35 to 200 m. The spacing between drill fences is nominally 100 m. Drillholes along the drill fences vary from approximately 50 m to approximately 100 m. In one instance, between TT-09 to TT-15b, does the spacing reach 140 m.

Drillhole and trench samples are shown in Figure 14.8 and Figure 14.9 respectively.

08400.0Y 1.13-1 4.09 17-170 1.<sup>18</sup> 008000.0Y 1.09 20 07800.0Y TREO% Fig 14.11 22 >= Lower Bound < Upper Bound 0.00000 0.10000 0.10000 0.20000 0.20000 0.30000 007600.0Y 0.30000 0.40000 TTR-028 MAR-02A 0.40000 0.50000 0.50000 0.60000 0.60000 0.70000 NB. 0.70000 0.80000 0.80000 0.90000 3007400.0Y 0.90000 1.00000 1.00000 99.00000 × 55800.DX 566200. DX

Figure 14.8 Drillhole Location in the Two Tom Deposit; Plan View

Note: Lines are 200 m x 200 m; North is up.







Figure 14.9 Drillhole and Trench Location in the Two Tom Deposit; Plan View

Note: Lines are 100 m x 100 m; North is up.

The attributes in the block model folder were created for the 18, capped and uncapped, metal oxide grades for the Two Tom resource estimate are shown in Figure 14.10.







Figure 14.10 Block Model Attributes for the Two Tom Deposit Resource Estimate





## 14.4.1 VARIOGRAPHY

Samples used for variography are a function of geological interpretation. All composite data within the two domains were used determining variograms. The data between individual LREOs and HREOs correlate well and variograms were determined for these two groups of REOs. Due to a lack of correlation of the Nb<sub>2</sub>O<sub>5</sub>, ThO<sub>2</sub>, BeO to the REOs, variograms for each of these three associated metal oxides were determined separately. Variograms were established using all the 3.0 m composite samples and used for the two interpreted domains.

The variography was generated using Datamine Studio 3 software. The composited drillhole data was exported from Gemcom GEMS<sup>M</sup> as a text file (.csv format) and imported into Datamine Studio 3. Down hole variograms, using a lag distance equal to the composite length, were created for each element group.

Since the distance between drillholes is variable, between 40 and 180 m, lag distances of 20 m were used in determining experimental variograms to capture the data along strike of the deposit. The ranges of the experimental variograms appear to reach the sill at approximately 40 to 100 m.

Experimental variography was subsequently used to calculate best-fit modeled variography. One or two spherical structures were used for spatial modelling and orientations for each grade group and were customized to Gemcom GEMS<sup>™</sup> requirements. Modeled variography results were exported from Datamine Studio 3 as a report file and ellipses of the model variogram directions were exported in .dxf format for visual reference and are presented in Appendix F. Table 14.11 shows which variogram profile was used for each metal oxide.

| Profile Name | Metal Oxides                                                                                                                                                                                                                                                                                                                           |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4001_LR      | La <sub>2</sub> O <sub>3</sub> , Ce <sub>2</sub> O <sub>3</sub> , Pr <sub>2</sub> O <sub>3</sub> , Nd <sub>2</sub> O <sub>3</sub> , Sm <sub>2</sub> O <sub>3</sub>                                                                                                                                                                     |
| 4001_HR      | Eu <sub>2</sub> O <sub>3</sub> , Gd <sub>2</sub> O <sub>3</sub> , Tb <sub>2</sub> O <sub>3</sub> , Dy <sub>2</sub> O <sub>3</sub> , Ho <sub>2</sub> O <sub>3</sub> , Er <sub>2</sub> O <sub>3</sub> , Tm <sub>2</sub> O <sub>3</sub> , Yb <sub>2</sub> O <sub>3</sub> , Lu <sub>2</sub> O <sub>3</sub> , Y <sub>2</sub> O <sub>3</sub> |
| 4001_NB      | Nb <sub>2</sub> O <sub>5</sub>                                                                                                                                                                                                                                                                                                         |
| 4001_TH      | ThO <sub>2</sub>                                                                                                                                                                                                                                                                                                                       |
| 4001_BE      | BeO                                                                                                                                                                                                                                                                                                                                    |
| 4002_LR      | La <sub>2</sub> O <sub>3</sub> , Ce <sub>2</sub> O <sub>3</sub> , Pr <sub>2</sub> O <sub>3</sub> , Nd <sub>2</sub> O <sub>3</sub> , Sm <sub>2</sub> O <sub>3</sub>                                                                                                                                                                     |
| 4002_HR      | Eu <sub>2</sub> O <sub>3</sub> , Gd <sub>2</sub> O <sub>3</sub> , Tb <sub>2</sub> O <sub>3</sub> , Dy <sub>2</sub> O <sub>3</sub> , Ho <sub>2</sub> O <sub>3</sub> , Er <sub>2</sub> O <sub>3</sub> , Tm <sub>2</sub> O <sub>3</sub> , Yb <sub>2</sub> O <sub>3</sub> , Lu <sub>2</sub> O <sub>3</sub> , Y <sub>2</sub> O <sub>3</sub> |
| 4001_NB      | Nb <sub>2</sub> O <sub>5</sub>                                                                                                                                                                                                                                                                                                         |
| 4002_TH      | ThO <sub>2</sub>                                                                                                                                                                                                                                                                                                                       |
| 4002_BE      | BeO                                                                                                                                                                                                                                                                                                                                    |

| Table 14.11 | Variogram | Parameter | Profiles |
|-------------|-----------|-----------|----------|
|-------------|-----------|-----------|----------|

## 14.4.2 VARIOGRAPHY PARAMETERS

In Gemcom GEMS<sup>™</sup>, the convention used for variography parameters for Kriging profiles is right hand in the Z direction, right hand in the X direction and right hand





rotation in the Z direction. Table 14.12 to Table 14.17 summarizes the variography parameters used for OK interpolation for each group of metal oxides.

| Profile<br>Name | Sill<br>=0.887     | Search<br>Anisotropy | Rotation<br>About Z<br>(°) | Rotation<br>About X<br>(°) | Rotation<br>About Z<br>(°) | X<br>Range<br>(m) | Y<br>Range<br>(m) | Z<br>Range<br>(m) | Search<br>Type |  |
|-----------------|--------------------|----------------------|----------------------------|----------------------------|----------------------------|-------------------|-------------------|-------------------|----------------|--|
| Domain 4        | Domain 4001 (GS_S) |                      |                            |                            |                            |                   |                   |                   |                |  |
| C0<br>(nugget)  | 0.075              | -                    | -                          | -                          | -                          | -                 | -                 | -                 | -              |  |
| C1              | 0.406              | Rotation<br>ZXZ      | -60                        | -60                        | 0                          | 33.0              | 50.0              | 67.0              | Spherical      |  |
| C2              | 0.406              | Rotation<br>ZXZ      | -60                        | -60                        | 0                          | 67                | 100               | 133               | Spherical      |  |
| Domain 4        | 4002 (GS_          | _N)                  |                            |                            |                            |                   |                   |                   |                |  |
| C0<br>(nugget)  | 0.020              | -                    | -                          | -                          | -                          | -                 | -                 | -                 | -              |  |
| C1              | 0.886              | Rotation<br>ZXZ      | -30                        | -50                        | 0                          | 34                | 34                | 34                | Spherical      |  |
| C2              | 0.094              | Rotation<br>ZXZ      | -30                        | -50                        | 0                          | 66                | 66                | 66                | Spherical      |  |

### Table 14.12 Variography Parameters LREO% by Domain

### Table 14.13 Variography Parameters for HREO% by Domain

| Profile<br>Name    | Sill<br>=1 | Search<br>Anisotropy | Rotation<br>About Z<br>(°) | Rotation<br>About X<br>(°) | Rotation<br>About Z<br>(°) | X<br>Range<br>(m) | Y<br>Range<br>(m) | Z<br>Range<br>(m) | Search<br>Type |
|--------------------|------------|----------------------|----------------------------|----------------------------|----------------------------|-------------------|-------------------|-------------------|----------------|
| Domain 4001 (GS_S) |            |                      |                            |                            |                            |                   |                   |                   |                |
| C0<br>(nugget)     | 0.040      | -                    | -                          | -                          | -                          | -                 | -                 | -                 | -              |
|                    | 0.188      | Rotation<br>ZXZ      | -60                        | -60                        | 0                          | 86                | 44                | 10                | Spherical      |
|                    | 0.772      | Rotation<br>ZXZ      | -60                        | -60                        | 0                          | 199               | 60                | 108               | Spherical      |
| Domain 4           | 1002 (GS   | 6_N)                 |                            |                            |                            |                   |                   |                   |                |
| C0<br>(nugget)     | 0.030      | -                    | -                          | -                          | -                          | -                 | -                 | -                 | -              |
| C1                 | 0.730      | Rotation<br>ZXZ      | -30                        | -50                        | 0                          | 32                | 32                | 32                | Spherical      |
| C2                 | 0.240      | Rotation<br>ZXZ      | -30                        | -50                        | 0                          | 49                | 49                | 49                | Spherical      |





| Profile<br>Name | Sill<br>=1 | Search<br>Anisotropy | Rotation<br>About Z<br>(°) | Rotation<br>About X<br>(°) | Rotation<br>About Z<br>(°) | X<br>Range<br>(m) | Y<br>Range<br>(m) | Z<br>Range<br>(m) | Search<br>Type |
|-----------------|------------|----------------------|----------------------------|----------------------------|----------------------------|-------------------|-------------------|-------------------|----------------|
| Domain 4        | 4001 (GS   | 6_S)                 |                            |                            |                            |                   |                   |                   |                |
| C0<br>(nugget)  | 0.12       | -                    | -                          | -                          | -                          | -                 | -                 | -                 | -              |
|                 | 0.55       | Rotation<br>ZXZ      | -60                        | -60                        | 0                          | 86                | 44                | 10                | Spherical      |
|                 | 0.33       | Rotation<br>ZXZ      | -60                        | -60                        | 0                          | 199               | 60                | 108               | Spherical      |
| Domain 4        | 4002 (GS   | 6_N)                 |                            |                            |                            |                   |                   |                   |                |
| C0<br>(nugget)  | 0.38       | -                    | -                          | -                          | -                          | -                 | -                 | -                 | -              |
| C1              | 0.536      | Rotation<br>ZXZ      | -30                        | -50                        | 0                          | 19                | 19                | 19                | Spherical      |
| C2              | 0.084      | Rotation<br>ZXZ      | -30                        | -50                        | 0                          | 136               | 136               | 136               | Spherical      |

### Table 14.14 Variography Parameters for Nb<sub>2</sub>O<sub>5</sub> by Domain

### Table 14.15 Variography Parameters for ThO<sub>2</sub> by Domain

| Profile<br>Name | Sill<br>=1         | Search<br>Anisotropy | Rotation<br>About Z<br>(°) | Rotation<br>About X<br>(°) | Rotation<br>About Z<br>(°) | X<br>Range<br>(m) | Y<br>Range<br>(m) | Z<br>Range<br>(m) | Search<br>Type |  |
|-----------------|--------------------|----------------------|----------------------------|----------------------------|----------------------------|-------------------|-------------------|-------------------|----------------|--|
| Domain 4        | Domain 4001 (GS_S) |                      |                            |                            |                            |                   |                   |                   |                |  |
| C0<br>(nugget)  | 0.10               | -                    | -                          | -                          | -                          | -                 | -                 | -                 | -              |  |
| C1              | 0.90               | Rotation<br>ZXZ      | -60                        | -60                        | 0                          | 160               | 140               | 140               | Spherical      |  |
|                 |                    |                      |                            |                            |                            |                   |                   |                   |                |  |
| Domain 4        | 002 (GS            | 6_N)                 |                            |                            |                            |                   |                   |                   |                |  |
| C0<br>(nugget)  | 0.05               | -                    | -                          | -                          | -                          | -                 | -                 | -                 | -              |  |
| C1              | 0.626              | Rotation<br>ZXZ      | -30                        | -50                        | 0                          | 20                | 20                | 20                | Spherical      |  |
| C2              | 0.324              | Rotation<br>ZXZ      | -30                        | -50                        | 0                          | 72                | 72                | 72                | Spherical      |  |





| Profile<br>Name | Sill<br>=1 | Search<br>Anisotropy | Rotation<br>About Z<br>(°) | Rotation<br>About X<br>(°) | Rotation<br>About Z<br>(°) | X<br>Range<br>(m) | Y<br>Range<br>(m) | Z<br>Range<br>(m) | Search<br>Type |
|-----------------|------------|----------------------|----------------------------|----------------------------|----------------------------|-------------------|-------------------|-------------------|----------------|
| Domain 4        | 001 (GS    | 5_5)                 |                            |                            |                            |                   |                   |                   |                |
| C0<br>(nugget)  | 0.078      | -                    | -                          | -                          | -                          | -                 | -                 | -                 | -              |
|                 | 0.404      | Rotation<br>ZXZ      | -60                        | -60                        | 0                          | 86                | 44                | 10                | Spherical      |
|                 | 0.518      | Rotation<br>ZXZ      | -60                        | -60                        | 0                          | 199               | 60                | 108               | Spherical      |
| Domain 4        | 002 (GS    | 5_N)                 |                            |                            |                            |                   |                   |                   |                |
| C0<br>(nugget)  | 0.09       | -                    | -                          | -                          | -                          | -                 | -                 | -                 | -              |
| C1              | 0.874      | Rotation<br>ZXZ      | -30                        | -50                        | 0                          | 28                | 28                | 28                | Spherical      |
| C2              | 0.036      | Rotation<br>ZXZ      | -30                        | -50                        | 0                          | 74                | 74                | 74                | Spherical      |

### Table 14.16 Variography Parameters for BeO by Domain

## 14.4.3 INTERPOLATION PLAN AND SPATIAL ANALYSIS

The interpolation methods used for populating the block model were OK, ID and Nearest Neighbour (NN) on capped data. For validation purposes, OK, ID and NN interpolation methods were also carried out on uncapped data.

For all interpolation methods, two passes were used. For each domain, a minimum of nine and a maximum of eighteen composite samples were used on the first pass to interpolate a block for the five metals. This allows the grade for each block to be interpolated by using composite assay values from at least three drillholes. The second pass used a minimum of six and a maximum of eighteen composite samples to allow blocks to estimated using a minimum of two drillholes. A summary of the interpolation passes are described in Table 14.17.

| Profile<br>Name | Number of Composite<br>Samples Used | Maximum Samples per<br>Drillhole | Minimum Number of<br>Drillholes |
|-----------------|-------------------------------------|----------------------------------|---------------------------------|
| 4001_P1         | Minimum 9; Maximum 24               | 4                                | 3                               |
| 4001_P2         | Minimum 6; Maximum 24               | 4                                | 2                               |
| 4002_P1         | Minimum 9; Maximum 24               | 4                                | 3                               |
| 4002_P2         | Minimum 6; Maximum 24               | 4                                | 2                               |

Table 14.17Description of Interpolation Passes for Domains 4001 and 4002

The orientation of the search ellipses for the south domain differs from that of the north domain. Two search passes were made in both the north and south domains. A list of parameters for each search ellipse used for each pass is shown in Table





14.18. Figure 14.11 and Figure 14.12 illustrate the orientations of the search ellipses used in the interpolation of the Two Tom block model.

| Profile<br>Name | Search<br>Anisotropy | Rotation<br>About Z<br>(°) | Rotation<br>About X<br>(°) | Rotation<br>About Z<br>(°) | X<br>Range<br>(m) | Y<br>Range<br>(m) | Z<br>Range<br>(m) | Search<br>Type |
|-----------------|----------------------|----------------------------|----------------------------|----------------------------|-------------------|-------------------|-------------------|----------------|
| 4001_P1         | Rotation ZXZ         | -60                        | -60                        | 0                          | 120               | 60                | 15                | Ellipsoidal    |
| 4001_P2         | Rotation ZXZ         | -60                        | -60                        | 0                          | 240               | 120               | 30                | Ellipsoidal    |
| 4002_P1         | Rotation ZXZ         | -30                        | -50                        | 0                          | 120               | 60                | 15                | Ellipsoidal    |
| 4002_P2         | Rotation ZXZ         | -30                        | -50                        | 0                          | 240               | 120               | 30                | Ellipsoidal    |

### Table 14.18Search Ellipse Parameters for Domains 4001 and 4002







# Figure 14.11Search Ellipse 4001\_P1 and 4001\_P2 for the 4001 Domain;<br/>Perspective View Looking 060°Az; No Scale







### Figure 14.12 Search Ellipse 4002\_P1 and 4002\_P2 for the 4002 Domain; Perspective View Looking Northeast; No Scale





Figure 14.13 and Figure 14.14 present the resulting OK interpolation results for TREO%, at the 300 m elevation, illustrating the general trend of the mineralization in a north-northwest direction.





Note: Block Size is 25 m x 25 m x 10 m







### Figure 14.14 Block Model Plan Section of the 4001 Domain (300 m Elevation) Showing TREO%

Note: Block Size is 25 m x 25 m x 10 m





## 14.5 MINERAL RESOURCE ESTIMATE

### 14.5.1 MINERAL RESOURCE CLASSIFICATION

Tetra Tech has estimated a new mineral resource estimate for the Two Tom deposit in accordance with CIM Best Practices and disclosed in accordance with NI 43-101. The effective date of the Two Tom mineral resource estimate is December 10, 2011.

The block model and mineral resource for the Two Tom deposit is classified as having Inferred Mineral Resources based on drillhole spacing and sample data populations. The mineral resource estimate for the deposit, at 0.6 TREO% cut-off, is an Inferred Resource of 41 million tonnes (Mt) at 1.18% TREO, 0.26% Nb<sub>2</sub>0<sub>5</sub>, 0.18% BeO and 0.06 ThO<sub>2</sub>% with 5% of the TREO being made up of HREOs.

The mineral resource was estimated by the OK interpolation method on capped grades for all 15 REOs and three associated metal oxides,  $Nb_20_5$ , BeO and  $ThO_2$ . The TREO% is a sum of the 15 individual interpolations of the REOs. No recoveries have been applied to the interpolated estimates.

Table 14.19 and Table 14.20 summarize the Inferred Resource estimates for the Two Tom REE-Nb-Be deposit at various TREO% cut-offs between 0.5 and 1.4 TREO%. Figures 14.19 and 14.20 summarize the Inferred Resource estimates for the Southern and Northern Domains of the Two Tom deposit illustrates the grades and tonnages for the Inferred Resources for TREO%.





| TREO% Cut-off | Tonnes<br>('000) | Density | LREO% | HREO%** | TRE0%*** | HREO:TREO<br>Ratio | Nb <sub>2</sub> O <sub>5</sub> % | BeO  | ThO₂% |
|---------------|------------------|---------|-------|---------|----------|--------------------|----------------------------------|------|-------|
| 1.40%         | 13,060           | 2.91    | 1.556 | 0.095   | 1.651    | 6%                 | 0.26                             | 0.22 | 0.06  |
| 1.20%         | 18,321           | 2.90    | 1.459 | 0.091   | 1.551    | 6%                 | 0.26                             | 0.21 | 0.06  |
| 1.00%         | 24,568           | 2.88    | 1.348 | 0.086   | 1.434    | 6%                 | 0.27                             | 0.21 | 0.06  |
| 0.90%         | 28,306           | 2.87    | 1.287 | 0.083   | 1.370    | 6%                 | 0.28                             | 0.20 | 0.06  |
| 0.80%         | 32,494           | 2.86    | 1.223 | 0.080   | 1.303    | 6%                 | 0.27                             | 0.20 | 0.06  |
| 0.70%         | 36,564           | 2.85    | 1.164 | 0.078   | 1.241    | 6%                 | 0.27                             | 0.19 | 0.06  |
| 0.60%         | 40,635           | 2.84    | 1.107 | 0.075   | 1.182    | 6%                 | 0.26                             | 0.18 | 0.06  |
| 0.50%         | 44,300           | 2.84    | 1.058 | 0.072   | 1.130    | 6%                 | 0.26                             | 0.18 | 0.06  |

### Table 14.19 Inferred Resource Estimate for the Two Tom Deposit

Note: \*\* Includes Y<sub>2</sub>O<sub>3</sub>

\*\*\* See Table 14.20

### Table 14.20 Inferred Resource Estimate for the Two Tom Deposit by REOs

| TREO<br>Cut-<br>off | Tonnes<br>('000) | La <sub>2</sub> O <sub>3</sub> % | Ce <sub>2</sub> O <sub>3</sub> % | Pr <sub>2</sub> O <sub>3</sub> % | Nd <sub>2</sub> O <sub>3</sub> % | Sm <sub>2</sub> O <sub>3</sub> % | Eu2O3% | Gd <sub>2</sub> O <sub>3</sub> % | Tb <sub>2</sub> O <sub>3</sub> % | Dy <sub>2</sub> O <sub>3</sub> % | Ho <sub>2</sub> O <sub>3</sub> % | Er <sub>2</sub> O <sub>3</sub> % | Tm <sub>2</sub> O <sub>3</sub> % | Yb <sub>2</sub> O <sub>3</sub> % | Lu <sub>2</sub> O <sub>3</sub> % | Y <sub>2</sub> O <sub>3</sub> % |
|---------------------|------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|
| 1.40%               | 13,060           | 0.419                            | 0.765                            | 0.078                            | 0.254                            | 0.040                            | 0.004  | 0.025                            | 0.003                            | 0.010                            | 0.001                            | 0.003                            | 0.000                            | 0.001                            | 0.000                            | 0.049                           |
| 1.20%               | 18,321           | 0.392                            | 0.717                            | 0.073                            | 0.240                            | 0.039                            | 0.004  | 0.023                            | 0.002                            | 0.010                            | 0.001                            | 0.003                            | 0.000                            | 0.001                            | 0.000                            | 0.046                           |
| 1.00%               | 24,568           | 0.358                            | 0.662                            | 0.068                            | 0.224                            | 0.037                            | 0.003  | 0.022                            | 0.002                            | 0.009                            | 0.001                            | 0.003                            | 0.000                            | 0.001                            | 0.000                            | 0.044                           |
| 0.90%               | 28,306           | 0.340                            | 0.632                            | 0.065                            | 0.215                            | 0.036                            | 0.003  | 0.022                            | 0.002                            | 0.009                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.042                           |
| 0.80%               | 32,494           | 0.321                            | 0.600                            | 0.062                            | 0.205                            | 0.034                            | 0.003  | 0.021                            | 0.002                            | 0.009                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.041                           |
| 0.70%               | 36,564           | 0.304                            | 0.572                            | 0.059                            | 0.196                            | 0.033                            | 0.003  | 0.020                            | 0.002                            | 0.008                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.039                           |
| 0.60%               | 40,635           | 0.288                            | 0.544                            | 0.056                            | 0.188                            | 0.032                            | 0.003  | 0.019                            | 0.002                            | 0.008                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.038                           |
| 0.50%               | 44,300           | 0.274                            | 0.519                            | 0.054                            | 0.180                            | 0.031                            | 0.003  | 0.019                            | 0.002                            | 0.008                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.037                           |





| TREO% Cut-off | Tonnes (x 000) | Density | LREO% | HREO% | TREO% | HREO:TREO Ratio | Nb <sub>2</sub> O <sub>5</sub> % | BeO  | ThO₂% |
|---------------|----------------|---------|-------|-------|-------|-----------------|----------------------------------|------|-------|
| 1.40%         | 6,644          | 2.91    | 1.518 | 0.096 | 1.614 | 6%              | 0.33                             | 0.25 | 0.07  |
| 1.20%         | 10,097         | 2.89    | 1.414 | 0.091 | 1.505 | 6%              | 0.32                             | 0.23 | 0.07  |
| 1.00%         | 14,759         | 2.87    | 1.289 | 0.085 | 1.374 | 6%              | 0.34                             | 0.22 | 0.07  |
| 0.90%         | 17,626         | 2.86    | 1.223 | 0.081 | 1.304 | 6%              | 0.34                             | 0.22 | 0.07  |
| 0.80%         | 21,108         | 2.85    | 1.151 | 0.078 | 1.229 | 6%              | 0.33                             | 0.21 | 0.07  |
| 0.70%         | 24,274         | 2.84    | 1.092 | 0.075 | 1.167 | 6%              | 0.32                             | 0.20 | 0.07  |
| 0.60%         | 27,419         | 2.83    | 1.035 | 0.072 | 1.107 | 7%              | 0.31                             | 0.19 | 0.07  |
| 0.50%         | 30,399         | 2.83    | 0.983 | 0.070 | 1.053 | 7%              | 0.30                             | 0.18 | 0.07  |

 Table 14.21
 Inferred Resource Estimate for the South Domain (4001) of the Two Tom Deposit

| Table 14.22 | Inferred Resource Estimate for the North Domain (4002) of the Two Tom Deposit |
|-------------|-------------------------------------------------------------------------------|
|-------------|-------------------------------------------------------------------------------|

| TREO% Cut-off | Tonnes (x 000) | Density | LREO% | HREO% | TREO% | HREO:TREO Ratio | Nb <sub>2</sub> O <sub>5</sub> % | BeO  | ThO₂% |
|---------------|----------------|---------|-------|-------|-------|-----------------|----------------------------------|------|-------|
| 1.40%         | 6,416          | 2.91    | 1.595 | 0.095 | 1.690 | 6%              | 0.19                             | 0.20 | 0.06  |
| 1.20%         | 8,225          | 2.90    | 1.515 | 0.092 | 1.607 | 6%              | 0.18                             | 0.19 | 0.05  |
| 1.00%         | 9,809          | 2.89    | 1.437 | 0.088 | 1.525 | 6%              | 0.18                             | 0.18 | 0.05  |
| 0.90%         | 10,680         | 2.89    | 1.392 | 0.086 | 1.478 | 6%              | 0.18                             | 0.18 | 0.05  |
| 0.80%         | 11,386         | 2.88    | 1.355 | 0.085 | 1.439 | 6%              | 0.17                             | 0.17 | 0.05  |
| 0.70%         | 12,290         | 2.88    | 1.306 | 0.082 | 1.388 | 6%              | 0.17                             | 0.17 | 0.05  |
| 0.60%         | 13,217         | 2.87    | 1.256 | 0.080 | 1.336 | 6%              | 0.17                             | 0.16 | 0.04  |
| 0.50%         | 13,902         | 2.86    | 1.220 | 0.078 | 1.298 | 6%              | 0.17                             | 0.16 | 0.04  |







### Figure 14.15 Grade-Tonnage Curves Showing Inferred Resources for TREO%





## 14.6 VALIDATION

### 14.6.1 MODEL VOLUME VALIDATION

The block model volumes were validated against the solid wireframe volumes and all differences were found to be within a tolerance of 0.003%. The result of the comparison is shown in Table 14.23.

# Table 14.23 Volume Comparison between Wireframe Solid Models and Block Models Models

| Wireframe | Wireframe Volume<br>(m <sup>3</sup> ) | Block Model Volume<br>(m <sup>3</sup> ) | Difference<br>(%) |
|-----------|---------------------------------------|-----------------------------------------|-------------------|
| GS_N      | 5,868,180                             | 5,686,976                               | 0.003%            |
| GS_S      | 12,449,545                            | 12,449,949                              | 0.003%            |

### 14.6.2 INTERPOLATION VALIDATION

A comparison was made of the estimated metal grades from the three interpolation methods as a further validation of the resource estimation. The comparison between these three values for each metal is shown in Table 14.24.

| Table 14.24 | Comparison | of OK, | ID2 and | NN Average | e Grades |
|-------------|------------|--------|---------|------------|----------|
|-------------|------------|--------|---------|------------|----------|

| Interpolation Method | TREO% | Nb <sub>2</sub> O <sub>5</sub> % | BeO   | ThO₂% |
|----------------------|-------|----------------------------------|-------|-------|
| OK                   | 0.995 | 0.245                            | 0.158 | 0.055 |
| ID2                  | 0.948 | 0.244                            | 0.155 | 0.054 |
| NN                   | 0.953 | 0.246                            | 0.151 | 0.055 |
| 3 m Comps            | 1.030 | 0.245                            | 0.160 | 0.054 |

### 14.6.3 SWATH PLOTS

Swath plots were created for each estimated capped TREO% grade by bench, by column (easting) and by row (northing) for each interpolation method as a visual comparison of the precision of the interpolation methods. Figure 14.16, Figure 14.17Table 14.18 and Figure 14.18illustrate the swath plots for TREO% by elevation, easting and northing, respectively. *The ID2 and OK grades resemble quite closely.* Variations in the NN grades, particularly at the ends of the graphs (i.e. the limits of the block model, denotes areas where sample populations used for estimation are no longer similar.





Figure 14.16 Swath Plots for TREO% by Easting













Figure 14.18 Swath Plots for TREO% by Elevation





# 15.0 ADJACENT PROPERTIES

Search Minerals Inc. holds the mineral rights to 301 claims comprising 7,525 ha of the Red Wine Complex, through its wholly-owned subsidiary company Alterra Resources Inc. (Alterra).

The claims are located to the south of the Dory Pond prospect (see Figure 4.3), and immediately adjacent to, and in between, the contiguous to REM's mineral licences that cover the Dory Pond, Green Arrow, Michelin #1, Mann #1 and Mann #2 prospects.

Alterra has completed preliminary work, including an airborne magnetic and radiometric survey, geological mapping, prospecting, trenching, and geochemical sampling, and drilling programs on this project (http://www.searchminerals.ca/redwine.php).

There are no NI 43-101 resource estimates for the Alterra Property.



# 16.0 OTHER RELEVANT DATA AND INFORMATION

There is no additional information or explanation necessary to make the technical report understandable and not misleading.





# 17.0 INTERPRETATION AND CONCLUSIONS

Tetra Tech has estimated a new mineral resource estimate for the Two Tom deposit in accordance with CIM Best Practices and disclosed in accordance with NI 43-101. The effective date of the Two Tom mineral resource estimate is December 10, 2011.

The block model and mineral resource for the Two Tom deposit is classified as having Inferred Mineral Resources based on drillhole spacing and sample data populations. The mineral resource estimate for the deposit, at 0.6 TREO% cut-off, is an Inferred Resource of 41Mt at 1.18% TREO, 0.26% Nb<sub>2</sub>0<sub>5</sub>, 0.18% BeO and 0.06 ThO<sub>2</sub>% with 5% of the TREO being made up of HREOs.

The mineral resource was estimated by the OK interpolation method on capped grades for all 15 REOs and three associated metal oxides,  $Nb_20_5$ , BeO and  $ThO_2$ . No recoveries have been applied to the interpolated estimates.

Table 17.1 and Table 17.2 summarize the Inferred Resource estimates for the Two Tom REE-Nb-Be deposit at various TREO% cut-offs between 0.5 and 1.4 TREO%.





| TREO% Cut-off | Tonnes<br>('000) | Density | LREO% | HREO%** | TRE0%*** | HREO:TREO<br>Ratio | Nb <sub>2</sub> O <sub>5</sub> % | BeO  | ThO₂% |
|---------------|------------------|---------|-------|---------|----------|--------------------|----------------------------------|------|-------|
| 1.40%         | 13,060           | 2.91    | 1.556 | 0.095   | 1.651    | 6%                 | 0.26                             | 0.22 | 0.06  |
| 1.20%         | 18,321           | 2.90    | 1.459 | 0.091   | 1.551    | 6%                 | 0.26                             | 0.21 | 0.06  |
| 1.00%         | 24,568           | 2.88    | 1.348 | 0.086   | 1.434    | 6%                 | 0.27                             | 0.21 | 0.06  |
| 0.90%         | 28,306           | 2.87    | 1.287 | 0.083   | 1.370    | 6%                 | 0.28                             | 0.20 | 0.06  |
| 0.80%         | 32,494           | 2.86    | 1.223 | 0.080   | 1.303    | 6%                 | 0.27                             | 0.20 | 0.06  |
| 0.70%         | 36,564           | 2.85    | 1.164 | 0.078   | 1.241    | 6%                 | 0.27                             | 0.19 | 0.06  |
| 0.60%         | 40,635           | 2.84    | 1.107 | 0.075   | 1.182    | 6%                 | 0.26                             | 0.18 | 0.06  |
| 0.50%         | 44,300           | 2.84    | 1.058 | 0.072   | 1.130    | 6%                 | 0.26                             | 0.18 | 0.06  |

### Table 17.1 Inferred Resource Estimate for the Two Tom Deposit

Note: \*\* Includes Y<sub>2</sub>O<sub>3</sub>

\*\*\* See Table 17.2

### Table 17.2 Inferred Resource Estimate for the Two Tom Deposit by REOs

| TREO<br>Cut-<br>off | Tonnes<br>('000) | La <sub>2</sub> O <sub>3</sub> % | Ce <sub>2</sub> O <sub>3</sub> % | Pr <sub>2</sub> O <sub>3</sub> % | Nd <sub>2</sub> O <sub>3</sub> % | Sm <sub>2</sub> O <sub>3</sub> % | Eu2O3% | Gd <sub>2</sub> O <sub>3</sub> % | Tb <sub>2</sub> O <sub>3</sub> % | Dy <sub>2</sub> O <sub>3</sub> % | Ho <sub>2</sub> O <sub>3</sub> % | Er <sub>2</sub> O <sub>3</sub> % | Tm <sub>2</sub> O <sub>3</sub> % | Yb <sub>2</sub> O <sub>3</sub> % | Lu <sub>2</sub> O <sub>3</sub> % | Y <sub>2</sub> O <sub>3</sub> % |
|---------------------|------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|
| 1.40%               | 11,037           | 0.431                            | 0.784                            | 0.079                            | 0.259                            | 0.041                            | 0.004  | 0.025                            | 0.003                            | 0.010                            | 0.001                            | 0.003                            | 0.000                            | 0.001                            | 0.000                            | 0.431                           |
| 1.20%               | 16,667           | 0.401                            | 0.732                            | 0.074                            | 0.244                            | 0.039                            | 0.004  | 0.024                            | 0.002                            | 0.010                            | 0.001                            | 0.003                            | 0.000                            | 0.001                            | 0.000                            | 0.401                           |
| 1.00%               | 22,692           | 0.368                            | 0.678                            | 0.069                            | 0.228                            | 0.037                            | 0.003  | 0.023                            | 0.002                            | 0.009                            | 0.001                            | 0.003                            | 0.000                            | 0.001                            | 0.000                            | 0.368                           |
| 0.90%               | 26,367           | 0.349                            | 0.647                            | 0.066                            | 0.219                            | 0.036                            | 0.003  | 0.022                            | 0.002                            | 0.009                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.349                           |
| 0.80%               | 30,646           | 0.329                            | 0.614                            | 0.063                            | 0.210                            | 0.035                            | 0.003  | 0.021                            | 0.002                            | 0.009                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.329                           |
| 0.70%               | 34,832           | 0.311                            | 0.584                            | 0.060                            | 0.200                            | 0.034                            | 0.003  | 0.020                            | 0.002                            | 0.008                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.311                           |
| 0.60%               | 39,051           | 0.294                            | 0.554                            | 0.057                            | 0.191                            | 0.032                            | 0.003  | 0.020                            | 0.002                            | 0.008                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.294                           |
| 0.50%               | 43,229           | 0.278                            | 0.526                            | 0.054                            | 0.182                            | 0.031                            | 0.003  | 0.019                            | 0.002                            | 0.008                            | 0.001                            | 0.002                            | 0.000                            | 0.001                            | 0.000                            | 0.278                           |





# 18.0 RECOMMENDATIONS

Tetra Tech recommends that additional drilling is warranted to further investigate and develop the known Two Tom REE deposit. Additional drilling will determine, with greater confidence, both the continuity of the mineralized lithologies and the continuity of the REE, Nb<sub>2</sub>O<sub>5</sub> and BeO grades. The recommended drilling includes step out drilling, either along strike or laterally, and in-fill drilling of the interpreted deposit.

Tetra Tech recommends a proposed drilling program with a minimum of 5,000 m in 19 drillholes. The locations of these drillholes are divided between the north and south domains and are designed to extend the known deposit along strike, to the northwest and southeast, and to better interpret the separation of the two domains. The budget for the proposed drill program is estimated at approximately \$1.3 million.

A summary of the breakdown of costs for the proposed drill program is shown in Table 18.1.

| Description                                | Estimated Cost<br>(Cdn\$) |
|--------------------------------------------|---------------------------|
| Drilling                                   |                           |
| Drilling – Mobilization/Demobilization     | 30,000                    |
| Drilling – \$130 / m x 5,000 m             | 650,000                   |
| Helicopter Support \$1800/hour x 120 hours | 216,000                   |
| REM Personnel – Geologists, Geotechnicians | 160,000                   |
| Assaying (including transport)             | 240,000                   |
| Total                                      | 1,296,000                 |

### Table 18.1 Estimated Cost Breakdown for Proposed Drill Program

Table 18.2 presents a list of proposed drillholes for the Two Tom deposit and Figure 18.1 presents a location map of the proposed drillholes.





| Drillhole | Easting<br>(m) | Northing<br>(m) | Length<br>(m) | Bearing<br>(°Az) | Dip<br>(°) | Comments                             |
|-----------|----------------|-----------------|---------------|------------------|------------|--------------------------------------|
| N-01      | 555330         | 6008300         | 225           | 210              | -45        | extension northwest                  |
| N-02      | 555310         | 6008380         | 225           | 210              | -45        | extension northwest                  |
| N-03      | 555400         | 6008400         | 225           | 210              | -45        | extension northwest                  |
| N-04      | 555450         | 6008370         | 250           | 210              | -45        | infill                               |
| N-05      | 555530         | 6008400         | 325           | 210              | -45        | lateral northeast                    |
| N-06      | 555590         | 6008365         | 325           | 210              | -45        | lateral northeast                    |
| N-07      | 555625         | 6008280         | 325           | 210              | -45        | extension northeast                  |
| N-08      | 555485         | 6008230         | 225           | 210              | -45        | infill                               |
| N-09      | 555545         | 6008150         | 225           | 210              | -45        | extension southeast                  |
| N-10      | 555630         | 6008170         | 225           | 210              | -45        | extension southeast                  |
| S-01      | 555730         | 6008130         | 275           | 235              | -45        | extension northwest                  |
| S-02      | 555765         | 6008090         | 275           | 235              | -45        | extension northwest                  |
| S-03      | 555780         | 6007990         | 300           | 235              | -45        | extension northwest                  |
| S-04      | 555840         | 6007880         | 300           | 235              | -45        | infill; confirm bifurcation at depth |
| S-05      | 555850         | 6007760         | 325           | 235              | -45        | infill; confirm bifurcation at depth |
| S-06      | 555910         | 6007800         | 325           | 235              | -45        | infill; confirm bifurcation at depth |
| S-07      | 555950         | 6007635         | 225           | 235              | -45        | extension southeast                  |
| S-08      | 555990         | 6007585         | 200           | 235              | -45        | extension southeast                  |
| S-09      | 556085         | 6007470         | 200           | 235              | -45        | extension southeast                  |
| Total     | -              | -               | 5,000         | -                | -          | -                                    |

## Table 18.2 Summary of Proposed Drillhole Locations







Figure 18.1 Locations of Proposed Drillholes; Plan View

Note: Each square represents 200 m x 200 m





# 19.0 REFERENCES

- Batterson, M., and Legrow, P. 1986. Quaternary exploration and surficial mapping in the Letitia Lake area, Labrador. *In* Current research, *Edited by* R. F. Blackwood, D. G. Walsh and R. V. Gibbons, Government of Newfoundland and Labrador, Department of Mines and Energy, Mineral Development Division, Report 86-01, 1986, pages 257-265.
- Batterson, M., and Miller, R. 1987. A new Y-Nb-Be showing in the western part of the Central Mineral Belt, Labrador. Government of Newfoundland and Labrador, Department of Mines, Mineral Development Division, Open File 13L/01/0066, 1987, 6 pages.
- Belik, G.D. 1996. Geological and Geochemical Report on the Letitia Lake Property for Pacific Bay Minerals Limited. (unpublished)
- Boniwell, J B. 1967: Report on an airborne gamma ray spectrometer survey of areas E and F of the Seal Lake area, Labrador volume 1. British Newfoundland Exploration Limited and Barringer Research Limited. (unpublished)
- Deane, R W. 1970: Microscopic examination of rare earth samples from Labrador. British Newfoundland Exploration Limited and Lakefield Research of Canada Limited. (unpublished)
- Dujardin, R.A. 1961: Ten Mile Lake drilling report for Rio Tinto Exploration Limited. (unpublished)
- Gebru, A., Penney, G., and Nielsen, P. 2011. Assessment Report of Diamond Drilling Activities on Mineral Licenses of the Red Wine Project, Letitia – Shallow Lake – Bessie Lake Areas, Labrador, pp. 55.
- Kerr, A., 2011. Rare-Earth-Element (REE) Mineralization in Labrador: A Review of known Environments and the Geological Context of Current Exploration Activity. Current Research (2011) Newfoundland and Labrador Department of Natural Resources, Geological Survey, Report 11-1, pages 109-143
- Miller, R.R. 1987: The Relationship Between Mann-Type Nb–Be Mineralization and Felsic Peralkaline Intrusives, Letitial Lake Project, Labrador. *In* Current Research (1987) Newfoundland Department of Mines Mineral Development Division, Report 87-1, pages 83-91.
- Miller, R.R. 1988: Yttrium (Y) and other Rare Metals (Be, Nb, REE, Ta, Zr) in Labrador. *In* Current Research (1988) Newfoundland Department of Mines Mineral Development Division, Report 88-1, pages 229-245.





- Reid, W. and Penney, G., 2011. Assessment Report of Prospecting Activities with Geological and Geophysical Compilations on Mineral Licenses of Red Wine Project, Letitia – Shallow Lake – Bessie Lake Areas, Labrador. 24 December 2011. 128 pages.
- Richardson, D.G. and Birkett, T.C., 1995. Peralkaline rock-associated rare metals; in Geology of Canadian Mineral Deposits, Geological Association of Canada, Geology of Canada No.8. pp.523-540.
- Smith, D R. 1968: Report on a follow up of radioactive anomalies in the Barringer area E, Seal Lake area, Labrador. British Newfoundland Exploration Limited.(unpublished)
- Thomas, A. 1981: Geology along the southwestern margin of the Central Mineral Belt, Labrador. Newfoundland Department of Mines and Energy, Mineral Development Division, Report 81-4, 40 pages.
- Westoll, N D S. 1971: Geological report on the 2-Tom Lake area in the Seal Lake area, Labrador. British Newfoundland Exploration Limited. (unpublished)
- Wilton, D. 2010. Preliminary Report on the Petrographic and SEM-MLA Analyses of Polished Thin Sections from the Rare Earth Metals Inc. Letitia Lake Project Central Labrador. 21 August, 2010. 35 pages. (unpublished)

### Web Sites

Rare Earth Metals http://www.rareearthmetals.ca/article/corporate-brochure-139.asp

Search Minerals http://www.searchminerals.ca/redwine.php

### **REM PRESS RELEASES**

Press release. November 17, 2011. Rare Earth Metals Announces \$1.5 Million Flow-Through Financing. www.rareearthmetals.ca.

Press release. November 16, 2011. Two Tom In-Fill Drilling Completed. www.rareearthmetals.ca.

Press release. November 22, 2010. Up to 11.90% TREO From Red Wine Property. www.rareearthmetals.ca.

Press release. November 17. 2010. Rare Earth reports results from additional holes drilled in Red Wine. www.rareearthmetals.ca.

Press release. October 25, 2010. 1.35% TREO over 105.7 meters. www.rareearthmetals.ca.





Press release. September 22, 2010. Six New Discoveries in Labrador. www.rareearthmetals.ca.

Press release. August 31, 2010. Encouraging assay results from the Red Wine Property. www.rareearthmetals.ca.

Press release. August 12, 2010. Rare Earth Metals to begin drilling at Red Wine/Letitia Lake. www.rareearthmetals.ca.

Press release. July 20, 2010. Rare Earth Metals complete Letitia / Red Wine Airborne Survey. www.rareearthmetals.ca.

Press release. July 6, 2010. Airborne Survey and Channel Sampling Underway in Labradror. www.rareearthmetals.ca.

Press release. May 6, 2010. Completes Two Additional Option Agreements. www.rareearthmetals.ca.





# 20.0 CERTIFICATE OF QUALIFIED PERSON

I, Paul Daigle, P.Geo., of Toronto, Ontario, do hereby certify:

- I am a Senior Geologist with Tetra Tech WEI Inc. with a business address at 900-330 Bay Street, Toronto, Ontario, M5H 2S8.
- This certificate applies to the Technical Report entitled Resource Estimate and Technical Report for the Two Tom REE Deposit of the Red Wine Complex, Labrador, Canada, dated January 20, 2012 (the "Technical Report").
- I am a graduate of Concordia University, (B.Sc. Geology, 1989). I am a member in good standing of the Association of Professional Geoscientists of Ontario (Registration #1592) and the Association of Professional Engineers and Geoscientists of Saskatchewan (Registration #10665). My relevant experience includes over 21 years of experience in a wide variety of geological settings and, most recently, the completion of an NI 43-101 compliant resource estimate and technical report on the B zone REE deposit, Strange Lake Project, Québec; and the Clay-Howells Fe-REE deposit, Ontario. I am a "Qualified Person" for purposes of National Instrument 43-101 (the "Instrument").
- My most recent personal inspection of the Property was July 19, 2011 for one days.
- I am responsible for Sections 1 to 20 of the Technical Report.
- I am independent of Rare Earth Metals Inc. as defined by Section 1.5 of the Instrument.
- I have no prior involvement with the Property that is the subject of the Technical Report.
- I have read the Instrument and the technical has been prepared in compliance with the Instrument.
- As of the date of this certificate, to the best of my knowledge, information and belief, the technical contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Signed and dated this 20<sup>th</sup> day of January, 2012 at Toronto, Ontario

"Original document signed and sealed by Paul Daigle, P.Geo."

Paul Daigle, P.Geo. Senior Geologist Tetra Tech WEI Inc.

# APPENDIX A

MINERAL LICENCES

**Only Natural Resources** 

### <u>S</u>earch

## **Mineral Rights Inquiry Report**

| Licence Number:         | 016277M                                          |  |
|-------------------------|--------------------------------------------------|--|
| File Number:            | 775:0291                                         |  |
| <b>Original Holder:</b> | Quinlan, Roland                                  |  |
| Licence Holder:         | Quinlan, Roland                                  |  |
| Address:                | P.O. Box 18<br>Birchy Bay, NL<br>Canada, A0G 1E0 |  |
| Licence Status:         | Issued                                           |  |
| Location:               | Bessie Lake                                      |  |
| Electoral Dist.:        | 01 Torngat Mountains                             |  |
| <b>Recorded Date:</b>   | 2009/05/26                                       |  |
| Issuance Date:          | 2009/06/25                                       |  |
| <b>Renewal Date:</b>    | 2014/06/25                                       |  |
| <b>Report Due Date:</b> | 2013/08/26                                       |  |
| Org. No. Claims:        | 4.0000                                           |  |
| Cur. No. Claims:        | 4.0000                                           |  |
| <b>Recording Fee:</b>   | \$40.00                                          |  |
| Receipt(s):             | 56667164 (2009/05/26) \$40.00                    |  |
| Deposit Amount:         | \$0.00                                           |  |
| Deposit:                | No related security deposit receipt              |  |
| Map Sheet No(s):        | 13L/01                                           |  |

### **Comments:**

Reg 13; Genuine Prospector As per email from P.Nielsen 2010.08.24, first year work report is en route. Year 1 work report consists of prospecting and rock sampling. Reviewed and accepted 2010.08.25 (AM). Year 1 supplementary report consists of an airborne radiometric and magnetic survey (2010.11.22). Expenditures of \$340 added 2010.11.29. Reviewed and accepted 2010.11.29 (AM). Year 2 work report consists of prospecting and rock sampling. Reviewed and accepted 2011.01.31 (AM). Year 2 supplementary report consists of diamond drilling. \$440,621.29 added 2011.03.02. Reviewed and accepted 2011.03.15 (AM). Year 3 work report consists of diamond drilling. Reviewed and accepted 2011.12.20 (JL)

### **Mapped Claim Description:**

Beginning at the Northeast corner of the herein described parcel of land, and said corner having UTM coordinates of 6 008 000 N, 556 500 E; of Zone 20; thence South 1,000 metres, thence West 1,000 metres, thence North 1,000 metres, thence East 1,000 metres to the point of beginning. All bearings are referred to the UTM grid, Zone 20. NAD27.

| Land Claims (effective 2005/12/01): |            |            |                |  |
|-------------------------------------|------------|------------|----------------|--|
| LISA: 0.00%                         | LIL: 0.00% | VBP: 0.00% | Crown: 100.00% |  |

Extensions:

None

### Work Reports:

| Year | <b>Receive Date</b> | Acceptance<br>Date | Actual<br>Expenditure | Claims | Security<br>Deposit | C2 Status |
|------|---------------------|--------------------|-----------------------|--------|---------------------|-----------|
| 1    | 2010/08/24          | 2010/08/25         | \$8,627.00            | 4.0000 |                     |           |
| 2    | 2011/01/20          | 2011/01/31         | \$528,185.37          | 4.0000 |                     |           |
| 3    | 2011/12/12          | 2011/12/20         | \$574,941.00          | 4.0000 |                     |           |

\$3,600.00 to be expended on this license by 2022/06/25

| Licence Transfers:                             | None       |      |
|------------------------------------------------|------------|------|
| Partial Surrenders:                            | None       |      |
| This Licence replaces Licence N                | lumber(s): | None |
| This Licence is replaced by Licence Number(s): |            | None |
| Work Report Descriptions:                      |            | None |

### Detailed breakdown of projected required expenditure:

| Actual Year | Actual Expenditure | Work Year | Excess Expenditure | Claims |
|-------------|--------------------|-----------|--------------------|--------|
| 1           | \$8,627.00         |           |                    |        |
|             |                    | 1         | \$7,827.00         | 4.0000 |
|             |                    | 2         | \$6,827.00         | 4.0000 |
|             |                    | 3         | \$5,627.00         | 4.0000 |
|             |                    | 4         | \$4,227.00         | 4.0000 |
|             |                    | 5         | \$2,627.00         | 4.0000 |
|             |                    | 6         | \$227.00           | 4.0000 |
| 2           | \$528,185.37       |           |                    |        |
|             |                    | 7         | \$526,012.37       | 4.0000 |

|   | 8            | \$523,612.37 | 4.0000 |
|---|--------------|--------------|--------|
|   | 9            | \$521,212.37 | 4.0000 |
|   | 10           | \$518,812.37 | 4.0000 |
|   | 11           | \$515,212.37 | 4.0000 |
| 3 | \$574,941.00 |              |        |
|   | 12           | \$571,341.00 | 4.0000 |
|   | 13           | -\$3,600.00  | 4.0000 |
|   |              |              |        |

| Disc | claimer/Privacy |
|------|-----------------|
|------|-----------------|

Home •

- Contact •

Government Home
 This page and all contents are copyright, Government of Newfoundland and Labrador, all rights reserved.

**Only Natural Resources** 

### <u>S</u>earch

Ŧ

## **Mineral Rights Inquiry Report**

| Licence Number:                                 | 016522M                                                           |
|-------------------------------------------------|-------------------------------------------------------------------|
| File Number:                                    | 775:0426                                                          |
| <b>Original Holder:</b>                         | Lewis, Donna                                                      |
| Licence Holder:                                 | Lewis, Donna                                                      |
| Address:                                        | 88 Harmsworth Drive<br>Grand Falls-Windsor, NL<br>Canada, A2A 2Y8 |
| Licence Status:                                 | Issued                                                            |
| Location:                                       | Bessie Lake                                                       |
| Electoral Dist.:                                | 01 Torngat Mountains                                              |
| <b>Recorded Date:</b>                           | 2009/09/11                                                        |
| Issuance Date:                                  | 2009/10/12                                                        |
| <b>Renewal Date:</b>                            | 2014/10/12                                                        |
| <b>Report Due Date:</b>                         | 2012/12/11                                                        |
| Org. No. Claims:                                | 12.0000                                                           |
| Cur. No. Claims:                                | 12.0000                                                           |
| <b>Recording Fee:</b>                           | \$120.00                                                          |
| Receipt(s):                                     | 56744917 (2009/09/11) \$120.00                                    |
| Deposit Amount:<br>Deposit:<br>Map Sheet No(s): | \$0.00<br>No related security deposit receipt<br>13L/01           |

### **Comments:**

Reg 13; Genuine Prospector Year 1 work report consists of an airborne radiometric and magnetic survey. Reviewed and accepted 2010.11.29 (AM). Year 1 Supplementary Con 3 extension granted 2010.12.02 - report now due 2011.02.13. Year 1 supplementary report consists of prospecting and rock sampling. Expenditures of \$80,344.38 added 2011.01.20. Reviewed and accepted 2011.01.31 (AM). Year 1 supplementary report consists of diamond drilling. \$195,806.07 added 2011.03.02. Reviewed and accepted 2011.03.15 (AM). Year 2 work report consists of diamond drilling. Reviewed and accepted 2011.12.20 (JL)

### Mapped Claim Description:
Beginning at the Northeast corner of the herein described parcel of land, and said corner having UTM coordinates of 6 008 500 N, 557 000 E; of Zone 20; thence South 2,000 metres, thence West 2,000 metres, thence North 2,000 metres, thence East 2,000 metres to the point of beginning Reserving nevertheless out of the above described area all of the land being part of: Beginning at the Northeast corner of the herein described parcel of land, and said corner having UTM coordinates of 6 008 000 N, 556 500 E; of Zone 20; thence South 1,000 metres, thence West 1,000 metres, thence North 1,000 metres, thence East 1,000 metres to the point of beginning are referred to the UTM grid, Zone 20. NAD27.

#### Land Claims (effective 2005/12/01):

| LISA: 0.00% | LIL: 0.00% | VBP: 0.00% | Crown: 100.00% |
|-------------|------------|------------|----------------|
|             |            |            |                |

Extensions:

None

#### Work Reports:

| Year | Receive Date | Acceptance<br>Date | Actual<br>Expenditure | Claims  | Security<br>Deposit | C2 Status |
|------|--------------|--------------------|-----------------------|---------|---------------------|-----------|
| 1    | 2010/11/22   | 2010/11/29         | \$277,171.45          | 12.0000 |                     |           |
| 2    | 2011/12/12   | 2011/12/20         | \$869,521.00          | 12.0000 |                     |           |

10,800.00 to be expended on this license by 2021/10/12

| Licence Transfers:              | None            |      |
|---------------------------------|-----------------|------|
| Partial Surrenders:             | None            |      |
| This Licence replaces Licence I | Number(s):      | None |
| This Licence is replaced by Lic | ence Number(s): | None |
| Work Report Descriptions:       |                 | None |

#### Detailed breakdown of projected required expenditure:

| Actual Year | Actual Expenditure | Work Year | Excess Expenditure | Claims  |
|-------------|--------------------|-----------|--------------------|---------|
| 1           | \$277,171.45       |           |                    |         |
|             |                    | 1         | \$274,771.45       | 12.0000 |
|             |                    | 2         | \$271,771.45       | 12.0000 |
|             |                    | 3         | \$268,171.45       | 12.0000 |
|             |                    | 4         | \$263,971.45       | 12.0000 |
|             |                    | 5         | \$259,171.45       | 12.0000 |
|             |                    | 6         | \$251,971.45       | 12.0000 |

|   |              | 7  | \$244,771.45 | 12.0000 |
|---|--------------|----|--------------|---------|
|   |              | 8  | \$237,571.45 | 12.0000 |
|   |              | 9  | \$230,371.45 | 12.0000 |
|   |              | 10 | \$223,171.45 | 12.0000 |
| 2 | \$869,521.00 |    |              |         |
|   |              | 11 | \$858,721.00 | 12.0000 |
|   |              | 12 | -\$10,800.00 | 12.0000 |
|   |              |    |              |         |

| • | Disclaimer/Privacy |
|---|--------------------|
|---|--------------------|

Home •

Contact •

Government Home
This page and all contents are copyright, Government of Newfoundland and Labrador, all rights reserved.

**Only Natural Resources** 

#### <u>S</u>earch

Ŧ

### **Mineral Rights Inquiry Report**

| Licence Number:                                 | 016548M                                                 |
|-------------------------------------------------|---------------------------------------------------------|
| File Number:                                    | 775:0440                                                |
| <b>Original Holder:</b>                         | Quinlan, Marilyn                                        |
| Licence Holder:                                 | Quinlan, Marilyn                                        |
| Address:                                        | P.O. Box 18<br>Birchy Bay, NL<br>Canada, A0G 1E0        |
| Licence Status:                                 | Issued                                                  |
| Location:                                       | Bessie Lake                                             |
| Electoral Dist.:                                | 01 Torngat Mountains                                    |
| <b>Recorded Date:</b>                           | 2009/09/15                                              |
| <b>Issuance Date:</b>                           | 2009/10/15                                              |
| <b>Renewal Date:</b>                            | 2014/10/15                                              |
| <b>Report Due Date:</b>                         | 2012/12/14                                              |
| Org. No. Claims:                                | 30.0000                                                 |
| Cur. No. Claims:                                | 30.0000                                                 |
| <b>Recording Fee:</b>                           | \$300.00                                                |
| Receipt(s):                                     | 56746302 (2009/09/15) \$300.00                          |
| Deposit Amount:<br>Deposit:<br>Map Sheet No(s): | \$0.00<br>No related security deposit receipt<br>13L/01 |

#### **Comments:**

Reg 13; Genuine Prospector Year 1 work report consists of an airborne radiometric and magnetic survey. Reviewed and accepted 2010.11.29 (AM). Year 1 Supplementary Con 3 extension granted 2010.12.02 - report now due 2011.02.14. Year 1 supplementary report consists of prospecting and rock sampling. Expenditures of \$12,845.06 added 2011.01.20. Reviewed and accepted 2011.01.31 (AM). Year 2 work report consists of compilation, prospecting and rock sampling.

#### Mapped Claim Description:

Beginning at the Northeast corner of the herein described parcel of land, and said corner having UTM coordinates of 6 009 500 N, 558 000 E; of Zone 20; thence South 500 metres, thence West 1,000

metres, thence South 500 metres, thence West 2,000 metres, thence South 2,000 metres, thence East 2,000 metres, thence South 500 metres, thence West 2,500 metres, thence North 1,000 metres, thence West 500 metres, thence North 2,000 metres, thence East 4,500 metres to the point of beginning. All bearings are referred to the UTM grid, Zone 20. NAD27.

| Land Clai  | ms (effective 200   | 5/12/01):          |                       |         |                     |           |
|------------|---------------------|--------------------|-----------------------|---------|---------------------|-----------|
| LISA:      | : 0.00% L           | IL: 0.00%          | VBP: 0.00%            | Crown:  | 100.00%             |           |
| Extension  | s:                  | Ν                  | Ione                  |         |                     |           |
| Work Rep   | oorts:              |                    |                       |         |                     |           |
| Year       | <b>Receive Date</b> | Acceptance<br>Date | Actual<br>Expenditure | Claims  | Security<br>Deposit | C2 Status |
| 1          | 2010/11/22          | 2010/11/29         | \$15,396.06           | 30.0000 |                     |           |
| 2          | 2012/01/03          |                    | \$29,604.00           | 30.0000 |                     |           |
| \$17,999   | 9.94 to be expende  | ed on this license | by 2015/10/15         |         |                     |           |
| Licence T  | ransfers:           | Ν                  | Ione                  |         |                     |           |
| Partial Su | rrenders:           | Ν                  | Ione                  |         |                     |           |
| This Licer | nce replaces Lice   | nce Number(s):     |                       | None    |                     |           |
| This Licer | nce is replaced by  | Licence Numbe      | r(s):                 | None    |                     |           |

Work Report Descriptions:

#### Detailed breakdown of projected required expenditure:

| Actual Year | Actual Expenditure | Work Year | Excess Expenditure | Claims  |
|-------------|--------------------|-----------|--------------------|---------|
| 1           | \$15,396.06        |           |                    |         |
|             |                    | 1         | \$9,396.06         | 30.0000 |
|             |                    | 2         | \$1,896.06         | 30.0000 |
| 2           | \$29,604.00        |           |                    |         |
|             |                    | 3         | \$22,500.06        | 30.0000 |
|             |                    | 4         | \$12,000.06        | 30.0000 |
|             |                    | 5         | \$0.06             | 30.0000 |
|             |                    | 6         | -\$17,999.94       | 30.0000 |
|             |                    |           |                    |         |

None

• Disclaimer/Privacy

• <u>Home</u>

• Contact

Government Home
This page and all contents are copyright, Government of Newfoundland and Labrador, all rights reserved.

## APPENDIX B

RAW DATA STATISTICS

# Descriptive Statistics [Subset] RAW Statistics (no zeroes)

#### ALL DATA

|                       | LENGTH  | TREO  | NB2O3  | BEO     | THO2    | LA2O3 | CE2O3 | PR2O3 | ND2O3  | SM2O3 | EU2O3 | GD2O3 | TB2O3  | DY2O3  | HO2O3 | ER2O3 | TM2O3  | YB2O3  | LU2O3  | Y2O3  |
|-----------------------|---------|-------|--------|---------|---------|-------|-------|-------|--------|-------|-------|-------|--------|--------|-------|-------|--------|--------|--------|-------|
|                       |         |       |        |         |         |       |       |       |        |       |       |       |        |        |       |       |        |        |        |       |
| Valid cases           | 2647    | 2645  | 2647   | 2647    | 2645    | 2645  | 2645  | 2645  | 2645   | 2645  | 2644  | 2645  | 2645   | 2645   | 2645  | 2645  | 2645   | 2645   | 2644   | 2645  |
| Mean                  | 1.522   | 0.900 | 0.227  | 0.144   | 0.049   | 0.215 | 0.411 | 0.043 | 0.145  | 0.025 | 0.002 | 0.015 | 0.002  | 0.006  | 0.001 | 0.002 | 0.000  | 0.001  | 0.000  | 0.031 |
|                       |         |       |        |         |         |       |       |       |        |       |       |       |        |        |       |       |        |        |        |       |
| Variance              | 0.04    | 0.634 | 0.091  | 0.027   | 0.004   | 0.045 | 0.142 | 0.001 | 0.015  | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000 |
| Std. Deviation        | 0.19    | 0.796 | 0.302  | 0.166   | 0.064   | 0.212 | 0.377 | 0.038 | 0.122  | 0.020 | 0.002 | 0.012 | 0.001  | 0.005  | 0.001 | 0.001 | 0.000  | 0.001  | 0.000  | 0.022 |
| Variation Coefficient | 0.12    | 0.885 | 1.333  | 1.154   | 1.301   | 0.988 | 0.917 | 0.881 | 0.841  | 0.783 | 0.754 | 0.747 | 0.717  | 0.703  | 0.698 | 0.695 | 0.710  | 0.706  | 0.721  | 0.699 |
|                       |         |       |        |         |         |       |       |       |        |       |       |       |        |        |       |       |        |        |        |       |
| Skew                  | 7.52    | 0.845 | 3.970  | 3.298   | 7.978   | 1.208 | 0.934 | 0.825 | 0.691  | 0.824 | 0.777 | 0.614 | 0.527  | 0.560  | 0.857 | 1.305 | 2.024  | 2.393  | 2.595  | 0.720 |
| Kurtosis              | 140.14  | 0.448 | 23.980 | 25.388  | 120.724 | 2.061 | 0.863 | 0.381 | -0.113 | 1.443 | 1.266 | 0.307 | -0.323 | -0.446 | 0.937 | 4.467 | 11.193 | 13.581 | 13.141 | 0.354 |
| Minimum               | 0.40    | 0.006 | 0.002  | 0.00083 | 0.000   | 0.001 | 0.002 | 0.000 | 0.001  | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.001 |
| Maximum               | 6.00    | 6.450 | 3.804  | 2.507   | 1.423   | 1.959 | 3.209 | 0.296 | 0.837  | 0.159 | 0.013 | 0.077 | 0.007  | 0.026  | 0.005 | 0.013 | 0.002  | 0.009  | 0.001  | 0.169 |
| Range                 | 5.60    | 6.443 | 3.802  | 2.506   | 1.422   | 1.958 | 3.206 | 0.296 | 0.836  | 0.159 | 0.013 | 0.077 | 0.007  | 0.025  | 0.005 | 0.013 | 0.002  | 0.009  | 0.001  | 0.168 |
| Sum                   | 4027.56 |       |        |         |         |       |       |       |        |       |       |       |        |        |       |       |        |        |        |       |
| 1st percentile        | 1.00    | 0.023 | 0.004  | 0.001   | 0.001   | 0.005 | 0.009 | 0.001 | 0.004  | 0.001 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.002 |
| 5th percentile        | 1.50    | 0.031 | 0.013  | 0.003   | 0.002   | 0.006 | 0.012 | 0.001 | 0.005  | 0.001 | 0.000 | 0.001 | 0.000  | 0.000  | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.003 |
| 10th percentile       | 1.50    | 0.056 | 0.026  | 0.007   | 0.003   | 0.010 | 0.022 | 0.003 | 0.010  | 0.002 | 0.000 | 0.001 | 0.000  | 0.001  | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.005 |
| 25th percentile       | 1.50    | 0.056 | 0.026  | 0.007   | 0.003   | 0.010 | 0.022 | 0.003 | 0.010  | 0.002 | 0.000 | 0.001 | 0.000  | 0.001  | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.005 |
| Median                | 1.50    | 0.641 | 0.140  | 0.097   | 0.038   | 0.136 | 0.286 | 0.031 | 0.112  | 0.022 | 0.002 | 0.014 | 0.001  | 0.006  | 0.001 | 0.002 | 0.000  | 0.001  | 0.000  | 0.027 |
| 75th percentile       | 1.50    | 1.523 | 0.261  | 0.206   | 0.067   | 0.361 | 0.690 | 0.072 | 0.244  | 0.041 | 0.004 | 0.025 | 0.003  | 0.010  | 0.001 | 0.003 | 0.000  | 0.001  | 0.000  | 0.047 |
| 90th percentile       | 1.50    | 2.019 | 0.501  | 0.339   | 0.101   | 0.509 | 0.944 | 0.095 | 0.315  | 0.049 | 0.004 | 0.030 | 0.003  | 0.013  | 0.002 | 0.004 | 0.000  | 0.002  | 0.000  | 0.062 |
| 95th percentile       | 1.76    | 2.343 | 0.790  | 0.440   | 0.129   | 0.629 | 1.096 | 0.109 | 0.354  | 0.056 | 0.005 | 0.034 | 0.004  | 0.014  | 0.002 | 0.004 | 0.000  | 0.002  | 0.000  | 0.070 |
| 99th percentile       | 2.25    | 2.950 | 1.547  | 0.700   | 0.259   | 0.832 | 1.412 | 0.140 | 0.443  | 0.076 | 0.007 | 0.044 | 0.005  | 0.018  | 0.003 | 0.005 | 0.001  | 0.003  | 0.000  | 0.088 |

# Descriptive Statistics [Subset] RAW Statistics (no zeroes)

#### Rock Codes 101, 102, 103, 104, 111, 112

|                       | TREO    | NB2O3  | BEO     | THO2    | LA2O3 | CE2O3 | PR2O3 | ND2O3 | SM2O3 | EU2O3 | GD2O3 | TB2O3 | DY2O3 | HO2O3 | ER2O3  | TM2O3  | YB2O3  | LU2O3  | Y2O3  |
|-----------------------|---------|--------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|-------|
| Valid cases           | 1772    | 1774   | 1774    | 1772    | 1772  | 1772  | 1772  | 1772  | 1772  | 1771  | 1772  | 1772  | 1772  | 1772  | 1772   | 1772   | 1772   | 1772   | 1772  |
| Mean                  | 0.657   | 0.218  | 0.116   | 0.045   | 0.150 | 0.298 | 0.032 | 0.109 | 0.020 | 0.002 | 0.012 | 0.001 | 0.005 | 0.001 | 0.001  | 0.000  | 0.001  | 0.000  | 0.024 |
| Varianco              | 0.517   | 0 107  | 0.026   | 0.005   | 0.026 | 0 116 | 0.001 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 |
| Std. Deviation        | 0.517   | 0.107  | 0.020   | 0.005   | 0.030 | 0.110 | 0.001 | 0.013 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 |
| Std. Deviation        | 0.719   | 0.327  | 0.162   | 0.073   | 0.190 | 0.340 | 0.034 | 0.112 | 0.019 | 0.002 | 0.011 | 0.001 | 0.004 | 0.001 | 0.001  | 0.000  | 0.001  | 0.000  | 0.019 |
| Variation Coefficient | 1.094   | 1.503  | 1.394   | 1.636   | 1.260 | 1.142 | 1.085 | 1.025 | 0.938 | 0.888 | 0.884 | 0.830 | 0.795 | 0.774 | 0.772  | 0.799  | 0.788  | 0.799  | 0.785 |
|                       |         |        |         |         |       |       |       |       |       |       |       |       |       |       |        |        |        |        |       |
| Skew                  | 1.683   | 4.122  | 4.090   | 8.041   | 2.249 | 1.788 | 1.600 | 1.386 | 1.388 | 1.365 | 1.180 | 1.064 | 1.068 | 1.556 | 2.464  | 3.656  | 3.831  | 3.576  | 1.323 |
| Kurtosis              | 3.784   | 24.488 | 35.765  | 108.103 | 7.717 | 4.617 | 3.265 | 1.959 | 3.158 | 3.097 | 1.893 | 1.166 | 1.079 | 5.215 | 15.776 | 31.052 | 30.549 | 22.967 | 3.281 |
| Minimum               | 0.006   | 0.002  | 0.00083 | 0.000   | 0.001 | 0.002 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.001 |
| Maximum               | 6.450   | 3.804  | 2,507   | 1.423   | 1.959 | 3.209 | 0.296 | 0.837 | 0.159 | 0.013 | 0.077 | 0.007 | 0.026 | 0.005 | 0.013  | 0.002  | 0.009  | 0.001  | 0.169 |
| Range                 | 6 4 4 3 | 3 802  | 2 506   | 1 422   | 1 958 | 3 206 | 0.296 | 0.836 | 0 159 | 0.013 | 0.077 | 0.007 | 0.025 | 0.005 | 0.013  | 0.002  | 0.009  | 0.001  | 0 168 |
| rango                 | 0.110   | 0.002  | 2.000   | 1.122   | 1.000 | 0.200 | 0.200 | 0.000 | 0.100 | 0.010 | 0.077 | 0.007 | 0.020 | 0.000 | 0.010  | 0.002  | 0.000  | 0.001  | 0.100 |
| 1st percentile        | 0.023   | 0.004  | 0.001   | 0.001   | 0.005 | 0.009 | 0.001 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.002 |
| 5th percentile        | 0.027   | 0.011  | 0.003   | 0.001   | 0.005 | 0.011 | 0.001 | 0.004 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.002 |
| 10th percentile       | 0.038   | 0.022  | 0.005   | 0.002   | 0.007 | 0.014 | 0.002 | 0.006 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.003 |
| 25th percentile       | 0.038   | 0.022  | 0.005   | 0.002   | 0.007 | 0.014 | 0.002 | 0.006 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.003 |
| Median                | 0.379   | 0.109  | 0.054   | 0.026   | 0.077 | 0.162 | 0.018 | 0.067 | 0.014 | 0.001 | 0.009 | 0.001 | 0.004 | 0.001 | 0.001  | 0.000  | 0.001  | 0.000  | 0.020 |
| 75th percentile       | 0.949   | 0.247  | 0.161   | 0.060   | 0.205 | 0.431 | 0.046 | 0.163 | 0.032 | 0.003 | 0.019 | 0.002 | 0.007 | 0.001 | 0.002  | 0.000  | 0.001  | 0.000  | 0.034 |
| 90th percentile       | 1.746   | 0.479  | 0.311   | 0.098   | 0.414 | 0.800 | 0.085 | 0.286 | 0.047 | 0.004 | 0.028 | 0.003 | 0.011 | 0.001 | 0.003  | 0.000  | 0.002  | 0.000  | 0.050 |
| 95th percentile       | 2.198   | 0.828  | 0.411   | 0.133   | 0.571 | 1.032 | 0.104 | 0.340 | 0.055 | 0.005 | 0.032 | 0.003 | 0.012 | 0.002 | 0.003  | 0.000  | 0.002  | 0.000  | 0.060 |
| 99th percentile       | 2.887   | 1.756  | 0.692   | 0.301   | 0.816 | 1.370 | 0.131 | 0.427 | 0.075 | 0.007 | 0.043 | 0.004 | 0.016 | 0.002 | 0.005  | 0.001  | 0.003  | 0.000  | 0.076 |

# Descriptive Statistics [Subset] RAW Statistics (no zeroes)

Rock Codes 401, 402, 403

|                       | TREO   | NB2O3  | BEO     | THO2   | LA2O3 | CE2O3 | PR2O3 | ND2O3  | SM2O3 | EU2O3 | GD2O3 | TB2O3  | DY2O3  | HO2O3  | ER2O3 | TM2O3 | YB2O3 | LU2O3 | Y2O3  |
|-----------------------|--------|--------|---------|--------|-------|-------|-------|--------|-------|-------|-------|--------|--------|--------|-------|-------|-------|-------|-------|
|                       |        |        |         |        | 1     |       | 1     |        |       |       |       |        |        |        |       |       |       |       |       |
| Valid cases           | 792    | 792    | 792     | 792    | 792   | 792   | 792   | 792    | 792   | 792   | 792   | 792    | 792    | 792    | 792   | 792   | 792   | 791   | 792   |
| Mean                  | 1.517  | 0.266  | 0.217   | 0.064  | 0.378 | 0.698 | 0.071 | 0.236  | 0.039 | 0.004 | 0.024 | 0.003  | 0.010  | 0.001  | 0.003 | 0.000 | 0.001 | 0.000 | 0.049 |
|                       |        |        |         |        |       |       |       |        |       |       |       |        |        |        |       |       |       |       |       |
| Variance              | 0.392  | 0.061  | 0.024   | 0.001  | 0.031 | 0.091 | 0.001 | 0.009  | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Std. Deviation        | 0.626  | 0.246  | 0.155   | 0.037  | 0.176 | 0.302 | 0.030 | 0.094  | 0.015 | 0.001 | 0.009 | 0.001  | 0.004  | 0.001  | 0.001 | 0.000 | 0.001 | 0.000 | 0.019 |
| Variation Coefficient | 0.413  | 0.927  | 0.714   | 0.577  | 0.466 | 0.433 | 0.417 | 0.397  | 0.388 | 0.372 | 0.368 | 0.359  | 0.366  | 0.389  | 0.411 | 0.445 | 0.462 | 0.479 | 0.379 |
|                       |        |        |         |        |       |       |       |        |       |       |       |        |        |        |       |       |       |       |       |
| Skew                  | -0.066 | 2.981  | 2.809   | 2.749  | 0.333 | 0.083 | 0.006 | -0.098 | 0.674 | 0.634 | 0.149 | -0.096 | -0.136 | 0.171  | 0.461 | 0.877 | 1.142 | 1.266 | 0.039 |
| Kurtosis              | 0.175  | 12.036 | 17.143  | 22.477 | 0.495 | 0.182 | 0.279 | 0.507  | 4.743 | 4.522 | 2.090 | 0.620  | -0.030 | -0.032 | 0.407 | 1.557 | 2.811 | 3.306 | 0.001 |
| Minimum               | 0.074  | 0.02   | 0.00666 | 0.004  | 0.015 | 0.029 | 0.003 | 0.012  | 0.002 | 0.000 | 0.002 | 0.000  | 0.001  | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.006 |
| Maximum               | 3.270  | 2.210  | 1.735   | 0.485  | 0.972 | 1.557 | 0.166 | 0.587  | 0.130 | 0.012 | 0.069 | 0.006  | 0.022  | 0.004  | 0.009 | 0.001 | 0.005 | 0.001 | 0.122 |
| Range                 | 3.195  | 2.190  | 1.728   | 0.480  | 0.958 | 1.528 | 0.163 | 0.574  | 0.128 | 0.012 | 0.067 | 0.006  | 0.021  | 0.003  | 0.008 | 0.001 | 0.005 | 0.001 | 0.115 |
|                       |        |        |         |        |       |       |       |        |       |       |       |        |        |        |       |       |       |       |       |
| 1st percentile        | 0.152  | 0.030  | 0.016   | 0.007  | 0.028 | 0.064 | 0.008 | 0.027  | 0.005 | 0.001 | 0.004 | 0.000  | 0.002  | 0.000  | 0.001 | 0.000 | 0.000 | 0.000 | 0.009 |
| 5th percentile        | 0.304  | 0.057  | 0.034   | 0.017  | 0.063 | 0.134 | 0.014 | 0.053  | 0.010 | 0.001 | 0.007 | 0.001  | 0.003  | 0.000  | 0.001 | 0.000 | 0.001 | 0.000 | 0.017 |
| 10th percentile       | 0.592  | 0.083  | 0.069   | 0.026  | 0.130 | 0.266 | 0.028 | 0.097  | 0.018 | 0.002 | 0.011 | 0.001  | 0.005  | 0.001  | 0.001 | 0.000 | 0.001 | 0.000 | 0.023 |
| 25th percentile       | 0.592  | 0.083  | 0.069   | 0.026  | 0.130 | 0.266 | 0.028 | 0.097  | 0.018 | 0.002 | 0.011 | 0.001  | 0.005  | 0.001  | 0.001 | 0.000 | 0.001 | 0.000 | 0.023 |
| Median                | 1.532  | 0.190  | 0.181   | 0.058  | 0.373 | 0.693 | 0.071 | 0.240  | 0.040 | 0.004 | 0.024 | 0.003  | 0.011  | 0.001  | 0.003 | 0.000 | 0.001 | 0.000 | 0.051 |
| 75th percentile       | 1.872  | 0.300  | 0.267   | 0.081  | 0.461 | 0.872 | 0.088 | 0.290  | 0.046 | 0.004 | 0.029 | 0.003  | 0.013  | 0.002  | 0.004 | 0.000 | 0.002 | 0.000 | 0.062 |
| 90th percentile       | 2.258  | 0.551  | 0.394   | 0.105  | 0.602 | 1.067 | 0.105 | 0.338  | 0.053 | 0.005 | 0.033 | 0.004  | 0.015  | 0.002  | 0.004 | 0.000 | 0.002 | 0.000 | 0.072 |
| 95th percentile       | 2.644  | 0.771  | 0.495   | 0.131  | 0.712 | 1.253 | 0.124 | 0.391  | 0.062 | 0.005 | 0.037 | 0.004  | 0.016  | 0.002  | 0.005 | 0.001 | 0.002 | 0.000 | 0.080 |
| 99th percentile       | 3.026  | 1.274  | 0.742   | 0.178  | 0.848 | 1.452 | 0.144 | 0.460  | 0.079 | 0.007 | 0.045 | 0.005  | 0.019  | 0.003  | 0.006 | 0.001 | 0.003 | 0.000 | 0.092 |

# APPENDIX C

HISTOGRAMS



























792

Ν

0.0300



REM: Two Tom - 400 Dy2O3% (uncapped)

1 2 5 10 20 30 40 50 60 70 80 90 95 98 99 99.9 99.99

Cumulative Probability (percent)













## APPENDIX D

CAPPED DATA STATISTICS

RAW Statistics (no zeroes) Capped Data

#### ALL DATA

|                       | LENGTH  |   | TREO_C | NB2O3_C | BEO_C   | THO2_C | LA2O3_C | CE2O3_C | PR203_C | ND2O3_C | SM2O3_C | EU2O3_C | GD2O3_C | TB2O3_C | DY2O3_C | HO2O3_C | ER2O3_C | TM2O3_C | YB2O3_C | LU2O3_C | Y2O3_C |
|-----------------------|---------|---|--------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|
|                       |         | _ |        |         |         |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |        |
| Valid cases           | 2647    |   | 2645   | 2647    | 2647    | 2645   | 2645    | 2645    | 2645    | 2645    | 2645    | 2644    | 2645    | 2645    | 2645    | 2645    | 2645    | 2645    | 2645    | 2644    | 2645   |
| Mean                  | 1.522   |   | 0.898  | 0.224   | 0.142   | 0.048  | 0.214   | 0.410   | 0.043   | 0.144   | 0.025   | 0.002   | 0.015   | 0.002   | 0.006   | 0.001   | 0.002   | 0.000   | 0.001   | 0.000   | 0.031  |
|                       |         |   |        |         |         |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |        |
| Variance              | 0.04    |   | 0.620  | 0.080   | 0.023   | 0.003  | 0.044   | 0.138   | 0.001   | 0.015   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  |
| Std. Deviation        | 0.19    |   | 0.787  | 0.283   | 0.151   | 0.051  | 0.210   | 0.372   | 0.037   | 0.120   | 0.019   | 0.002   | 0.011   | 0.001   | 0.005   | 0.001   | 0.001   | 0.000   | 0.001   | 0.000   | 0.022  |
| Variation Coefficient | 0.12    |   | 0.877  | 1.263   | 1.067   | 1.063  | 0.978   | 0.908   | 0.874   | 0.834   | 0.766   | 0.741   | 0.736   | 0.717   | 0.702   | 0.698   | 0.677   | 0.710   | 0.706   | 0.721   | 0.690  |
|                       |         |   |        |         |         |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |        |
| Skew                  | 7.52    |   | 0.724  | 3.187   | 1.758   | 3.192  | 1.034   | 0.789   | 0.718   | 0.593   | 0.539   | 0.544   | 0.437   | 0.527   | 0.538   | 0.857   | 0.885   | 2.024   | 2.393   | 2.595   | 0.583  |
| Kurtosis              | 140.14  |   | -0.450 | 13.162  | 3.882   | 18.127 | 0.436   | -0.290  | -0.412  | -0.697  | -0.382  | -0.180  | -0.664  | -0.323  | -0.548  | 0.937   | 0.633   | 11.193  | 13.581  | 13.141  | -0.476 |
| Minimum               | 0.40    |   | 0.006  | 0.002   | 0.00083 | 0.000  | 0.001   | 0.002   | 0.000   | 0.001   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.001  |
| Maximum               | 6.00    |   | 3.461  | 2.100   | 0.900   | 0.450  | 1.000   | 1.600   | 0.170   | 0.520   | 0.090   | 0.009   | 0.052   | 0.007   | 0.022   | 0.005   | 0.009   | 0.002   | 0.009   | 0.001   | 0.100  |
| Range                 | 5.60    |   | 3.454  | 2.098   | 0.899   | 0.450  | 0.999   | 1.598   | 0.170   | 0.519   | 0.090   | 0.009   | 0.052   | 0.007   | 0.022   | 0.005   | 0.008   | 0.002   | 0.009   | 0.001   | 0.099  |
| Sum                   | 4027.56 |   |        |         |         |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |        |
| 1st percentile        | 1.00    |   | 0.023  | 0.004   | 0.001   | 0.001  | 0.005   | 0.009   | 0.001   | 0.004   | 0.001   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.002  |
| 5th percentile        | 1.50    |   | 0.031  | 0.013   | 0.003   | 0.002  | 0.006   | 0.012   | 0.001   | 0.005   | 0.001   | 0.000   | 0.001   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.003  |
| 10th percentile       | 1.50    |   | 0.056  | 0.026   | 0.007   | 0.003  | 0.010   | 0.022   | 0.003   | 0.010   | 0.002   | 0.000   | 0.001   | 0.000   | 0.001   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.005  |
| 25th percentile       | 1.50    |   | 0.056  | 0.026   | 0.007   | 0.003  | 0.010   | 0.022   | 0.003   | 0.010   | 0.002   | 0.000   | 0.001   | 0.000   | 0.001   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.005  |
| Median                | 1.50    |   | 0.641  | 0.140   | 0.097   | 0.038  | 0.136   | 0.286   | 0.031   | 0.112   | 0.022   | 0.002   | 0.014   | 0.001   | 0.006   | 0.001   | 0.002   | 0.000   | 0.001   | 0.000   | 0.027  |
| 75th percentile       | 1.50    |   | 1.523  | 0.261   | 0.206   | 0.067  | 0.361   | 0.690   | 0.072   | 0.244   | 0.041   | 0.004   | 0.025   | 0.003   | 0.010   | 0.001   | 0.003   | 0.000   | 0.001   | 0.000   | 0.047  |
| 90th percentile       | 1.50    |   | 2.019  | 0.501   | 0.339   | 0.101  | 0.509   | 0.944   | 0.095   | 0.315   | 0.049   | 0.004   | 0.030   | 0.003   | 0.013   | 0.002   | 0.004   | 0.000   | 0.002   | 0.000   | 0.062  |
| 95th percentile       | 1.76    |   | 2.343  | 0.790   | 0.440   | 0.129  | 0.629   | 1.096   | 0.109   | 0.354   | 0.056   | 0.005   | 0.034   | 0.004   | 0.014   | 0.002   | 0.004   | 0.000   | 0.002   | 0.000   | 0.070  |
| 99th percentile       | 2.25    |   | 2.937  | 1.407   | 0.700   | 0.244  | 0.832   | 1.412   | 0.140   | 0.443   | 0.076   | 0.007   | 0.044   | 0.005   | 0.018   | 0.003   | 0.005   | 0.001   | 0.003   | 0.000   | 0.088  |

RAW Statistics (no zeroes) Rock Codes 101, 102, 103, 104, 111, 112 Capped Data

|                       | TREO_C | NB203_C | BEO_C   | THO2_C | LA203_C | CE203_C | PR203_C | ND203_C | SM203_C | E0203_C | GD203_C | TB203_C | DY203_C | H0203_C | ER203_C | TM203_C | YB203_C | LU203_C | ¥203_C |
|-----------------------|--------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|
|                       |        |         |         |        |         |         |         |         |         |         |         |         |         | 1       | 1       |         |         |         |        |
| Valid cases           | 1772   | 1774    | 1774    | 1772   | 1772    | 1772    | 1772    | 1772    | 1772    | 1771    | 1772    | 1772    | 1772    | 1772    | 1772    | 1772    | 1772    | 1772    | 1772   |
| Mean                  | 0.654  | 0.215   | 0.114   | 0.043  | 0.150   | 0.296   | 0.032   | 0.109   | 0.020   | 0.002   | 0.012   | 0.001   | 0.005   | 0.001   | 0.001   | 0.000   | 0.001   | 0.000   | 0.024  |
|                       |        |         |         |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |        |
| Variance              | 0.496  | 0.093   | 0.021   | 0.003  | 0.034   | 0.110   | 0.001   | 0.012   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  |
| Std. Deviation        | 0.704  | 0.306   | 0.146   | 0.057  | 0.185   | 0.332   | 0.034   | 0.110   | 0.018   | 0.002   | 0.011   | 0.001   | 0.004   | 0.001   | 0.001   | 0.000   | 0.001   | 0.000   | 0.018  |
| Variation Coefficient | 1.077  | 1.424   | 1.278   | 1.313  | 1.235   | 1.121   | 1.071   | 1.013   | 0.917   | 0.872   | 0.870   | 0.830   | 0.791   | 0.774   | 0.727   | 0.799   | 0.788   | 0.799   | 0.766  |
|                       |        |         |         |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |        |
| Skew                  | 1.446  | 3.320   | 2.234   | 3.582  | 1.899   | 1.498   | 1.397   | 1.226   | 1.074   | 1.121   | 0.966   | 1.064   | 1.011   | 1.556   | 1.328   | 3.656   | 3.831   | 3.576   | 1.000  |
| Kurtosis              | 1.501  | 13.528  | 6.113   | 18.935 | 3.539   | 1.685   | 1.352   | 0.700   | 0.635   | 1.159   | 0.377   | 1.166   | 0.708   | 5.215   | 2.569   | 31.052  | 30.549  | 22.967  | 0.634  |
| Minimum               | 0.006  | 0.002   | 0.00083 | 0.000  | 0.001   | 0.002   | 0.000   | 0.001   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.001  |
| Maximum               | 3.461  | 2.100   | 0.900   | 0.450  | 1.000   | 1.600   | 0.170   | 0.520   | 0.090   | 0.009   | 0.052   | 0.007   | 0.020   | 0.005   | 0.007   | 0.002   | 0.009   | 0.001   | 0.090  |
| Range                 | 3.454  | 2.098   | 0.899   | 0.450  | 0.999   | 1.598   | 0.170   | 0.519   | 0.090   | 0.009   | 0.052   | 0.007   | 0.020   | 0.005   | 0.006   | 0.002   | 0.009   | 0.001   | 0.089  |
|                       |        |         |         |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |        |
| 1st percentile        | 0.023  | 0.004   | 0.001   | 0.001  | 0.005   | 0.009   | 0.001   | 0.004   | 0.001   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.002  |
| 5th percentile        | 0.027  | 0.011   | 0.003   | 0.001  | 0.005   | 0.011   | 0.001   | 0.004   | 0.001   | 0.000   | 0.001   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.002  |
| 10th percentile       | 0.038  | 0.022   | 0.005   | 0.002  | 0.007   | 0.014   | 0.002   | 0.006   | 0.001   | 0.000   | 0.001   | 0.000   | 0.001   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.003  |
| 25th percentile       | 0.038  | 0.022   | 0.005   | 0.002  | 0.007   | 0.014   | 0.002   | 0.006   | 0.001   | 0.000   | 0.001   | 0.000   | 0.001   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.003  |
| Median                | 0.379  | 0.109   | 0.054   | 0.026  | 0.077   | 0.162   | 0.018   | 0.067   | 0.014   | 0.001   | 0.009   | 0.001   | 0.004   | 0.001   | 0.001   | 0.000   | 0.001   | 0.000   | 0.020  |
| 75th percentile       | 0.949  | 0.247   | 0.161   | 0.060  | 0.205   | 0.431   | 0.046   | 0.163   | 0.032   | 0.003   | 0.019   | 0.002   | 0.007   | 0.001   | 0.002   | 0.000   | 0.001   | 0.000   | 0.034  |
| 90th percentile       | 1.746  | 0.479   | 0.311   | 0.098  | 0.414   | 0.800   | 0.085   | 0.286   | 0.047   | 0.004   | 0.028   | 0.003   | 0.011   | 0.001   | 0.003   | 0.000   | 0.002   | 0.000   | 0.050  |
| 95th percentile       | 2.198  | 0.828   | 0.411   | 0.133  | 0.571   | 1.032   | 0.104   | 0.340   | 0.055   | 0.005   | 0.032   | 0.003   | 0.012   | 0.002   | 0.003   | 0.000   | 0.002   | 0.000   | 0.060  |
| 99th percentile       | 2.882  | 1.756   | 0.692   | 0.301  | 0.816   | 1.370   | 0.131   | 0.427   | 0.075   | 0.007   | 0.043   | 0.004   | 0.016   | 0.002   | 0.005   | 0.001   | 0.003   | 0.000   | 0.076  |
|                       |        |         |         |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |        |

### Descriptive Statistics [Subset]

RAW Statistics (no zeroes) Rock Codes 401, 402, 403 Capped Data

#### TREO\_C NB2O3\_C BEO\_C THO2\_C LA2O3\_C CE2O3\_C PR203\_C ND2O3\_C SM2O3\_C EU2O3\_C GD2O3\_C TB2O3\_C DY2O3\_C HO2O3\_C ER2O3\_C TM2O3\_C YB2O3\_C LU2O3\_C Y2O3\_C

| Valid cases           | 792    | 792   | 792     | 792   | 792   | 792   | 792    | 792    | 792   | 792   | 792    | 792    | 792    | 792    | 792   | 792   | 792   | 791   | 792    |
|-----------------------|--------|-------|---------|-------|-------|-------|--------|--------|-------|-------|--------|--------|--------|--------|-------|-------|-------|-------|--------|
| Mean                  | 1.516  | 0.263 | 0.215   | 0.063 | 0.378 | 0.698 | 0.071  | 0.236  | 0.038 | 0.004 | 0.024  | 0.003  | 0.010  | 0.001  | 0.003 | 0.000 | 0.001 | 0.000 | 0.049  |
|                       |        | 0.200 | 0.2.10  |       | 0.010 | 0.000 |        | 0.200  | ``    |       |        | 0.000  | 0.0.0  |        | 0.000 | 0.000 |       |       | 01010  |
| Variance              | 0.389  | 0.053 | 0.020   | 0.001 | 0.031 | 0.091 | 0.001  | 0.009  | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  |
| Std. Deviation        | 0.624  | 0.231 | 0.140   | 0.034 | 0.175 | 0.302 | 0.029  | 0.093  | 0.014 | 0.001 | 0.008  | 0.001  | 0.004  | 0.001  | 0.001 | 0.000 | 0.001 | 0.000 | 0.019  |
| Variation Coefficient | 0.412  | 0.877 | 0.653   | 0.529 | 0.464 | 0.432 | 0.415  | 0.393  | 0.370 | 0.356 | 0.356  | 0.359  | 0.366  | 0.389  | 0.411 | 0.445 | 0.462 | 0.479 | 0.376  |
|                       |        |       |         |       |       |       |        |        |       |       |        |        |        |        |       |       |       |       |        |
| Skew                  | -0.088 | 2.421 | 1.467   | 1.060 | 0.309 | 0.069 | -0.018 | -0.185 | 0.047 | 0.035 | -0.223 | -0.096 | -0.136 | 0.171  | 0.461 | 0.877 | 1.142 | 1.266 | -0.037 |
| Kurtosis              | 0.132  | 6.486 | 2.860   | 1.699 | 0.411 | 0.148 | 0.215  | 0.229  | 1.386 | 1.366 | 0.577  | 0.620  | -0.030 | -0.032 | 0.407 | 1.557 | 2.811 | 3.306 | -0.261 |
| Minimum               | 0.074  | 0.02  | 0.00666 | 0.004 | 0.015 | 0.029 | 0.003  | 0.012  | 0.002 | 0.000 | 0.002  | 0.000  | 0.001  | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.006  |
| Maximum               | 3.126  | 1.300 | 0.800   | 0.200 | 0.900 | 1.500 | 0.150  | 0.500  | 0.090 | 0.008 | 0.048  | 0.006  | 0.022  | 0.004  | 0.009 | 0.001 | 0.005 | 0.001 | 0.100  |
| Range                 | 3.051  | 1.280 | 0.793   | 0.196 | 0.885 | 1.471 | 0.147  | 0.488  | 0.088 | 0.008 | 0.046  | 0.006  | 0.021  | 0.003  | 0.008 | 0.001 | 0.005 | 0.001 | 0.094  |
| -                     |        |       |         |       |       |       |        |        |       |       |        |        |        |        |       |       |       |       |        |
| 1st percentile        | 0.152  | 0.030 | 0.016   | 0.007 | 0.028 | 0.064 | 0.008  | 0.027  | 0.005 | 0.001 | 0.004  | 0.000  | 0.002  | 0.000  | 0.001 | 0.000 | 0.000 | 0.000 | 0.009  |
| 5th percentile        | 0.304  | 0.057 | 0.034   | 0.017 | 0.063 | 0.134 | 0.014  | 0.053  | 0.010 | 0.001 | 0.007  | 0.001  | 0.003  | 0.000  | 0.001 | 0.000 | 0.001 | 0.000 | 0.017  |
| 10th percentile       | 0.592  | 0.083 | 0.069   | 0.026 | 0.130 | 0.266 | 0.028  | 0.097  | 0.018 | 0.002 | 0.011  | 0.001  | 0.005  | 0.001  | 0.001 | 0.000 | 0.001 | 0.000 | 0.023  |
| 25th percentile       | 0.592  | 0.083 | 0.069   | 0.026 | 0.130 | 0.266 | 0.028  | 0.097  | 0.018 | 0.002 | 0.011  | 0.001  | 0.005  | 0.001  | 0.001 | 0.000 | 0.001 | 0.000 | 0.023  |
| Median                | 1.532  | 0.190 | 0.181   | 0.058 | 0.373 | 0.693 | 0.071  | 0.240  | 0.040 | 0.004 | 0.024  | 0.003  | 0.011  | 0.001  | 0.003 | 0.000 | 0.001 | 0.000 | 0.051  |
| 75th percentile       | 1.872  | 0.300 | 0.267   | 0.081 | 0.461 | 0.872 | 0.088  | 0.290  | 0.046 | 0.004 | 0.029  | 0.003  | 0.013  | 0.002  | 0.004 | 0.000 | 0.002 | 0.000 | 0.062  |
| 90th percentile       | 2.258  | 0.551 | 0.394   | 0.105 | 0.602 | 1.067 | 0.105  | 0.338  | 0.053 | 0.005 | 0.033  | 0.004  | 0.015  | 0.002  | 0.004 | 0.000 | 0.002 | 0.000 | 0.072  |
| 95th percentile       | 2.617  | 0.771 | 0.495   | 0.131 | 0.712 | 1.253 | 0.124  | 0.391  | 0.062 | 0.005 | 0.037  | 0.004  | 0.016  | 0.002  | 0.005 | 0.001 | 0.002 | 0.000 | 0.080  |
| 99th percentile       | 3.006  | 1.274 | 0.742   | 0.178 | 0.848 | 1.452 | 0.144  | 0.460  | 0.079 | 0.007 | 0.045  | 0.005  | 0.019  | 0.003  | 0.006 | 0.001 | 0.003 | 0.000 | 0.092  |

### TRED C NR203 C RED C TH03 C LA303 C CE303 C RP303 C ND303 C CH303 C CD303 C TR303 C DV303 C H0303 C CR303 C TR303 C VR303 C LH303 C V203 C

# APPENDIX E

3 M COMPOSITE STATISTICS

#### **Descriptive Statistics**

3m Composite Statistics (no zeroes) Raw Data

#### ALL DATA

|                       | LENGTH | NB2O3_C | BEO_C   | THO2_C | LA2O3_C | CE2O3_C | PR203_C | ND2O3_C | SM2O3_C | EU2O3_C | GD2O3_C | TB2O3_C | DY2O3_C | HO2O3_C | ER2O3_C | TM2O3_C | YB2O3_C | LU2O3_C | Y2O3_C |
|-----------------------|--------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|
|                       |        |         |         |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |        |
| Valid cases           | 1125   | 1125    | 1125    | 1125   | 1125    | 1125    | 1125    | 1125    | 1125    | 1125    | 1125    | 1125    | 1125    | 1125    | 1125    | 1125    | 1125    | 1125    | 1125   |
| Mean                  | 2.963  | 0.247   | 0.162   | 0.055  | 0.248   | 0.472   | 0.049   | 0.165   | 0.029   | 0.003   | 0.017   | 0.002   | 0.007   | 0.001   | 0.002   | 0.000   | 0.001   | 0.000   | 0.035  |
|                       |        |         |         |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |        |
| Variance              | 0.07   | 0.069   | 0.020   | 0.003  | 0.041   | 0.125   | 0.001   | 0.013   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000  |
| Std. Deviation        | 0.27   | 0.263   | 0.141   | 0.057  | 0.202   | 0.353   | 0.035   | 0.112   | 0.018   | 0.002   | 0.010   | 0.001   | 0.004   | 0.001   | 0.001   | 0.000   | 0.001   | 0.000   | 0.020  |
| Variation Coefficient | 0.09   | 1.064   | 0.867   | 1.027  | 0.815   | 0.749   | 0.716   | 0.681   | 0.629   | 0.607   | 0.602   | 0.580   | 0.578   | 0.588   | 0.596   | 0.619   | 0.619   | 0.637   | 0.582  |
|                       |        |         |         |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |        |
| Skew                  | -7.60  | 2.804   | 1.471   | 6.105  | 0.929   | 0.653   | 0.536   | 0.405   | 0.523   | 0.505   | 0.345   | 0.272   | 0.331   | 0.684   | 1.201   | 2.015   | 2.442   | 2.729   | 0.530  |
| Kurtosis              | 62.50  | 11.010  | 2.990   | 65.893 | 0.784   | -0.035  | -0.356  | -0.633  | 0.689   | 0.706   | -0.100  | -0.565  | -0.658  | 0.733   | 4.629   | 12.675  | 16.427  | 16.733  | 0.197  |
| Minimum               | 0.11   | 0.00471 | 0.00139 | 0.001  | 0.002   | 0.005   | 0.001   | 0.002   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.001  |
| Maximum               | 4.00   | 2.336   | 0.942   | 0.809  | 1.410   | 2.292   | 0.209   | 0.604   | 0.133   | 0.011   | 0.068   | 0.006   | 0.023   | 0.004   | 0.012   | 0.002   | 0.009   | 0.001   | 0.148  |
| Range                 | 3.89   | 2.332   | 0.941   | 0.808  | 1.408   | 2.287   | 0.209   | 0.602   | 0.133   | 0.011   | 0.068   | 0.006   | 0.022   | 0.004   | 0.012   | 0.002   | 0.009   | 0.001   | 0.147  |
| Sum                   |        |         |         |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |        |
| 1st percentile        | 1.19   | 0.009   | 0.003   | 0.002  | 0.005   | 0.010   | 0.001   | 0.004   | 0.001   | 0.000   | 0.001   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.002  |
| 5th percentile        | 3.00   | 0.026   | 0.009   | 0.004  | 0.012   | 0.026   | 0.003   | 0.012   | 0.002   | 0.000   | 0.002   | 0.000   | 0.001   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.005  |
| 10th percentile       | 3.00   | 0.042   | 0.020   | 0.007  | 0.027   | 0.064   | 0.007   | 0.027   | 0.005   | 0.001   | 0.004   | 0.000   | 0.002   | 0.000   | 0.001   | 0.000   | 0.000   | 0.000   | 0.010  |
| 25th percentile       | 3.00   | 0.042   | 0.020   | 0.007  | 0.027   | 0.064   | 0.007   | 0.027   | 0.005   | 0.001   | 0.004   | 0.000   | 0.002   | 0.000   | 0.001   | 0.000   | 0.000   | 0.000   | 0.010  |
| Median                | 3.00   | 0.175   | 0.133   | 0.047  | 0.202   | 0.410   | 0.043   | 0.153   | 0.028   | 0.003   | 0.018   | 0.002   | 0.007   | 0.001   | 0.002   | 0.000   | 0.001   | 0.000   | 0.032  |
| 75th percentile       | 3.00   | 0.303   | 0.225   | 0.073  | 0.379   | 0.721   | 0.075   | 0.253   | 0.042   | 0.004   | 0.025   | 0.003   | 0.011   | 0.001   | 0.003   | 0.000   | 0.001   | 0.000   | 0.051  |
| 90th percentile       | 3.00   | 0.547   | 0.349   | 0.104  | 0.525   | 0.949   | 0.095   | 0.317   | 0.049   | 0.004   | 0.030   | 0.003   | 0.013   | 0.002   | 0.004   | 0.000   | 0.002   | 0.000   | 0.061  |
| 95th percentile       | 3.00   | 0.774   | 0.435   | 0.128  | 0.645   | 1.142   | 0.112   | 0.354   | 0.055   | 0.005   | 0.034   | 0.004   | 0.014   | 0.002   | 0.004   | 0.000   | 0.002   | 0.000   | 0.069  |
| 99th percentile       | 3.00   | 1.410   | 0.627   | 0.237  | 0.801   | 1.333   | 0.133   | 0.418   | 0.080   | 0.007   | 0.044   | 0.004   | 0.017   | 0.002   | 0.005   | 0.001   | 0.003   | 0.000   | 0.080  |

#### **Descriptive Statistics**

99th percentile

3.00

1.341

0.579

0.204

ALL DATA 3m Composite Statistics (no zeroes) Capped Data LENGTH NB203\_C BEO\_C TH02\_C LA203\_C CE203\_C PR203\_C ND203\_C SM203\_C EU203\_C GD203\_C TB203\_C DY203\_C H0203\_C ER203\_C TM203\_C YB203\_C LU203\_C Y203\_C Valid cases 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 112 Mean 2.963 0.245 0.160 0.054 0.247 0.470 0.049 0.165 0.028 0.003 0.017 0.002 0.0 Variance 0.064 0.002 0.040 0.001 0.012 0.000 0.000 0.000 0.0 0.07 0.018 0.122 0.000 Std. Deviation 0.27 0.253 0.134 0.045 0.200 0.349 0.035 0.111 0.017 0.002 0.010 0.001 0.0 Variation Coefficient 0.838 0.807 0.742 0.596 0.593 0.580 0.5 0.09 1.034 0.845 0.711 0.676 0.615 2.531 2.813 0.308 0.272 0.3 Skew -7.60 1.187 0.809 0.551 0.462 0.331 0.278 0.196 Kurtosis 62.50 8.288 1.317 16.760 -0.014 -0.597 -0.725 -0.939 -0.556 -0.250 -0.716 -0.565 -0.7 Minimum 0.00471 0.00139 0.002 0.000 0.000 0.000 0.0 0.11 0.001 0.005 0.001 0.002 0.000 Maximum 1.833 0.710 0.450 0.966 1.546 0.152 0.485 0.089 0.009 0.051 0.006 0.0 4.00 0.709 0.963 1.541 0.088 0.050 0.0 Range 3.89 1.828 0.449 0.151 0.482 0.009 0.006 Sum 0.000 1st percentile 1.19 0.009 0.003 0.002 0.005 0.010 0.001 0.004 0.001 0.000 0.001 0.0 5th percentile 3.00 0.026 0.009 0.004 0.012 0.026 0.003 0.011 0.002 0.000 0.002 0.000 0.0 10th percentile 0.042 0.020 0.027 0.004 0.0 3.00 0.007 0.064 0.007 0.027 0.005 0.001 0.000 25th percentile 0.042 0.020 0.027 0.004 0.0 3.00 0.007 0.064 0.007 0.027 0.005 0.001 0.000 Median 3.00 0.175 0.133 0.047 0.202 0.410 0.043 0.153 0.028 0.003 0.018 0.002 0.0 3.00 0.303 0.225 0.379 0.025 0.0 75th percentile 0.073 0.721 0.075 0.253 0.042 0.004 0.003 0.0 90th percentile 3.00 0.547 0.346 0.104 0.525 0.949 0.095 0.317 0.049 0.004 0.030 0.003 0.772 0.432 0.0 95th percentile 3.00 0.128 0.645 1.142 0.112 0.354 0.055 0.005 0.034 0.004

0.796

1.325

0.133

0.416

0.071

0.007

0.042

0.004

| 1125   | 1125  | 1125  | 1125   | 1125   | 1125   | 1125   |
|--------|-------|-------|--------|--------|--------|--------|
| 0.007  | 0.001 | 0.002 | 0.000  | 0.001  | 0.000  | 0.034  |
|        |       |       |        |        |        |        |
| 0.000  | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  |
| 0.004  | 0.001 | 0.001 | 0.000  | 0.001  | 0.000  | 0.020  |
| 0.577  | 0.588 | 0.580 | 0.619  | 0.619  | 0.637  | 0.574  |
|        |       |       |        |        |        |        |
| 0.311  | 0.684 | 0.736 | 2.015  | 2.442  | 2.729  | 0.386  |
| -0.733 | 0.733 | 0.359 | 12.675 | 16.427 | 16.733 | -0.632 |
| 0.000  | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.001  |
| 0.020  | 0.004 | 0.007 | 0.002  | 0.009  | 0.001  | 0.096  |
| 0.020  | 0.004 | 0.007 | 0.002  | 0.009  | 0.001  | 0.094  |
|        |       |       |        |        |        |        |
| 0.000  | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.002  |
| 0.001  | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.005  |
| 0.002  | 0.000 | 0.001 | 0.000  | 0.000  | 0.000  | 0.010  |
| 0.002  | 0.000 | 0.001 | 0.000  | 0.000  | 0.000  | 0.010  |
| 0.007  | 0.001 | 0.002 | 0.000  | 0.001  | 0.000  | 0.032  |
| 0.011  | 0.001 | 0.003 | 0.000  | 0.001  | 0.000  | 0.051  |
| 0.013  | 0.002 | 0.004 | 0.000  | 0.002  | 0.000  | 0.061  |
| 0.014  | 0.002 | 0.004 | 0.000  | 0.002  | 0.000  | 0.068  |
| 0.017  | 0.002 | 0.005 | 0.001  | 0.003  | 0.000  | 0.080  |

3m Composite Statistics (no zeroes) Raw Data

> Valid cases Mean

Variance Std. Deviation Variation Coefficient

> Skew Kurtosis Minimum Maximum Range Sum 1st percentile 5th percentile 10th percentile 25th percentile Median 75th percentile 90th percentile 95th percentile

**Descriptive Statistics [Subset]** 3m Composite Statistics (no zeroes)

> Valid cases Mean

Variance Std. Deviation Variation Coefficient

Skew Kurtosis Minimum Maximum Range Sum 1st percentile 5th percentile 10th percentile 25th percentile Median 75th percentile 90th percentile 95th percentile

Capped Data

#### Rock Codes 101, 102, 103, 104, 111, 112

#### NB2O3\_C BEO\_C THO2\_C LA2O3\_C CE2O3\_C PR203\_C ND2O3\_C SM2O3\_C EU2O3\_C GD2O3\_C TB2O3\_C DY2O3\_C HO2O3\_C ER2O3\_C TM2O3\_C YB2O3\_C LU2O3\_C Y2O3\_C

| 744     | 744     | 744    | 744   | 744   | 744   | 744   | 744   | 744   | 744   | 744   | 744   | 744   | 744    | 744    | 744    | 744    | 744   |
|---------|---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|-------|
| 711     | 711     | 711    | 711   | 711   | 711   | 711   | 711   | 711   | 711   | 711   | 711   | 711   | 711    | 711    | 711    | 711    | 711   |
| 0.241   | 0.135   | 0.051  | 0.180 | 0.354 | 0.037 | 0.129 | 0.023 | 0.002 | 0.014 | 0.001 | 0.006 | 0.001 | 0.002  | 0.000  | 0.001  | 0.000  | 0.027 |
|         |         |        |       |       |       |       |       |       |       |       |       |       |        |        |        |        |       |
| 0.084   | 0.019   | 0.004  | 0.035 | 0.108 | 0.001 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 |
| 0.290   | 0.138   | 0.066  | 0.187 | 0.329 | 0.033 | 0.107 | 0.018 | 0.002 | 0.010 | 0.001 | 0.004 | 0.000 | 0.001  | 0.000  | 0.001  | 0.000  | 0.017 |
| 1.206   | 1.020   | 1.294  | 1.041 | 0.931 | 0.883 | 0.832 | 0.759 | 0.722 | 0.716 | 0.668 | 0.643 | 0.637 | 0.648  | 0.691  | 0.695  | 0.726  | 0.641 |
|         |         |        |       |       |       |       |       |       |       |       |       |       |        |        |        |        |       |
| 2.871   | 1.726   | 6.009  | 1.903 | 1.463 | 1.280 | 1.088 | 1.131 | 1.145 | 0.952 | 0.830 | 0.823 | 1.375 | 2.501  | 4.051  | 4.438  | 4.212  | 1.130 |
| 10.743  | 3.397   | 55.643 | 4.516 | 2.392 | 1.470 | 0.718 | 2.173 | 2.397 | 1.235 | 0.665 | 0.573 | 5.191 | 18.700 | 39.426 | 41.814 | 32.134 | 3.158 |
| 0.00471 | 0.00139 | 0.001  | 0.002 | 0.005 | 0.001 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.001 |
| 2.336   | 0.800   | 0.809  | 1.410 | 2.292 | 0.209 | 0.604 | 0.133 | 0.011 | 0.068 | 0.006 | 0.023 | 0.004 | 0.012  | 0.002  | 0.009  | 0.001  | 0.148 |
| 2.332   | 0.798   | 0.808  | 1.408 | 2.287 | 0.209 | 0.602 | 0.133 | 0.011 | 0.068 | 0.006 | 0.022 | 0.004 | 0.012  | 0.002  | 0.009  | 0.001  | 0.147 |
|         |         |        |       |       |       |       |       |       |       |       |       |       |        |        |        |        |       |
| 0.007   | 0.003   | 0.001  | 0.005 | 0.010 | 0.001 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.002 |
| 0.024   | 0.007   | 0.003  | 0.007 | 0.014 | 0.002 | 0.007 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.004 |
| 0.038   | 0.015   | 0.006  | 0.020 | 0.044 | 0.005 | 0.018 | 0.004 | 0.000 | 0.003 | 0.000 | 0.001 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.007 |
| 0.038   | 0.015   | 0.006  | 0.020 | 0.044 | 0.005 | 0.018 | 0.004 | 0.000 | 0.003 | 0.000 | 0.001 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.007 |
| 0.145   | 0.083   | 0.035  | 0.118 | 0.245 | 0.027 | 0.097 | 0.019 | 0.002 | 0.012 | 0.001 | 0.005 | 0.001 | 0.001  | 0.000  | 0.001  | 0.000  | 0.024 |
| 0.298   | 0.191   | 0.067  | 0.231 | 0.511 | 0.054 | 0.193 | 0.036 | 0.003 | 0.021 | 0.002 | 0.008 | 0.001 | 0.002  | 0.000  | 0.001  | 0.000  | 0.036 |
| 0.577   | 0.332   | 0.108  | 0.437 | 0.832 | 0.088 | 0.298 | 0.048 | 0.004 | 0.028 | 0.003 | 0.011 | 0.001 | 0.003  | 0.000  | 0.001  | 0.000  | 0.052 |
| 0.808   | 0.417   | 0.134  | 0.622 | 1.065 | 0.107 | 0.341 | 0.054 | 0.005 | 0.032 | 0.003 | 0.012 | 0.002 | 0.003  | 0.000  | 0.002  | 0.000  | 0.059 |
| 1.447   | 0.655   | 0.290  | 0.808 | 1.331 | 0.131 | 0.420 | 0.078 | 0.008 | 0.046 | 0.004 | 0.016 | 0.002 | 0.005  | 0.001  | 0.003  | 0.000  | 0.071 |

#### Rock Codes 101, 102, 103, 104, 111, 112

#### NB203\_C BE0\_C TH02\_C LA203\_C CE203\_C PR203\_C ND203\_C SM203\_C EU203\_C GD203\_C TB203\_C DY203\_C H0203\_C ER203\_C TM203\_C YB203\_C LU203\_C Y203\_C

| 711     | 711     | 711    | 711   | 711   | 711   | 711   | 711   | 711   | 711   | 711   | 711   | 711   | 711   | 711    | 711    | 711    | 711   |
|---------|---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|-------|
| 0.239   | 0.133   | 0.049  | 0.179 | 0.352 | 0.037 | 0.128 | 0.023 | 0.002 | 0.014 | 0.001 | 0.006 | 0.001 | 0.002 | 0.000  | 0.001  | 0.000  | 0.027 |
|         |         |        |       |       |       |       |       |       |       |       |       |       |       |        |        |        |       |
| 0.079   | 0.017   | 0.003  | 0.033 | 0.103 | 0.001 | 0.011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000 |
| 0.281   | 0.132   | 0.052  | 0.183 | 0.322 | 0.032 | 0.105 | 0.017 | 0.002 | 0.010 | 0.001 | 0.004 | 0.000 | 0.001 | 0.000  | 0.001  | 0.000  | 0.017 |
| 1.175   | 0.991   | 1.046  | 1.022 | 0.914 | 0.872 | 0.822 | 0.740 | 0.708 | 0.703 | 0.668 | 0.640 | 0.637 | 0.601 | 0.691  | 0.695  | 0.726  | 0.623 |
|         |         |        |       |       |       |       |       |       |       |       |       |       |       |        |        |        |       |
| 2.594   | 1.539   | 3.111  | 1.678 | 1.268 | 1.148 | 0.977 | 0.840 | 0.916 | 0.759 | 0.830 | 0.765 | 1.375 | 1.057 | 4.051  | 4.438  | 4.212  | 0.749 |
| 7.979   | 2.287   | 16.330 | 2.542 | 0.968 | 0.596 | 0.073 | 0.221 | 0.873 | 0.128 | 0.665 | 0.256 | 5.191 | 1.697 | 39.426 | 41.814 | 32.134 | 0.114 |
| 0.00471 | 0.00139 | 0.001  | 0.002 | 0.005 | 0.001 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.001 |
| 1.833   | 0.710   | 0.450  | 0.966 | 1.546 | 0.152 | 0.485 | 0.089 | 0.009 | 0.051 | 0.006 | 0.020 | 0.004 | 0.007 | 0.002  | 0.009  | 0.001  | 0.090 |
| 1.828   | 0.709   | 0.449  | 0.963 | 1.541 | 0.151 | 0.482 | 0.088 | 0.009 | 0.050 | 0.006 | 0.020 | 0.004 | 0.006 | 0.002  | 0.009  | 0.001  | 0.089 |
|         |         |        |       |       |       |       |       |       |       |       |       |       |       |        |        |        |       |
| 0.007   | 0.003   | 0.001  | 0.005 | 0.010 | 0.001 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.002 |
| 0.024   | 0.007   | 0.003  | 0.007 | 0.014 | 0.002 | 0.007 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.004 |
| 0.038   | 0.015   | 0.006  | 0.020 | 0.044 | 0.005 | 0.018 | 0.004 | 0.000 | 0.003 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.007 |
| 0.038   | 0.015   | 0.006  | 0.020 | 0.044 | 0.005 | 0.018 | 0.004 | 0.000 | 0.003 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.007 |
| 0.145   | 0.083   | 0.035  | 0.118 | 0.245 | 0.027 | 0.097 | 0.019 | 0.002 | 0.012 | 0.001 | 0.005 | 0.001 | 0.001 | 0.000  | 0.001  | 0.000  | 0.024 |
| 0.298   | 0.190   | 0.067  | 0.231 | 0.511 | 0.054 | 0.193 | 0.036 | 0.003 | 0.021 | 0.002 | 0.008 | 0.001 | 0.002 | 0.000  | 0.001  | 0.000  | 0.036 |
| 0.577   | 0.327   | 0.108  | 0.437 | 0.832 | 0.088 | 0.298 | 0.048 | 0.004 | 0.028 | 0.003 | 0.011 | 0.001 | 0.003 | 0.000  | 0.001  | 0.000  | 0.051 |
| 0.808   | 0.414   | 0.134  | 0.622 | 1.065 | 0.107 | 0.341 | 0.054 | 0.005 | 0.032 | 0.003 | 0.012 | 0.002 | 0.003 | 0.000  | 0.002  | 0.000  | 0.059 |
| 1.436   | 0.567   | 0.269  | 0.808 | 1.311 | 0.131 | 0.420 | 0.070 | 0.007 | 0.043 | 0.004 | 0.015 | 0.002 | 0.005 | 0.001  | 0.003  | 0.000  | 0.071 |

3m Composite Statistics (no zeroes) Raw Data

> Valid cases Mean

Variance Std. Deviation Variation Coefficient

> Skew Kurtosis Minimum Maximum Range Sum 1st percentile 5th percentile 10th percentile 25th percentile Median 75th percentile 90th percentile 95th percentile 99th percentile

**Descriptive Statistics [Subset]** 3m Composite Statistics (no zeroes)

Capped Data

#### Rock Codes 401, 402, 403

NB203\_C BEO\_C TH02\_C LA203\_C CE203\_C PR203\_C ND203\_C SM203\_C EU203\_C GD203\_C TB203\_C DY203\_C H0203\_C ER203\_C TM203\_C YB203\_C LU203\_C Y203\_C

| 398   | 398     | 398    | 398   | 398    | 398    | 398    | 398   | 398   | 398    | 398    | 398    | 398    | 398   | 398   | 398   | 398   | 398    |
|-------|---------|--------|-------|--------|--------|--------|-------|-------|--------|--------|--------|--------|-------|-------|-------|-------|--------|
| 0.266 | 0.217   | 0.064  | 0.378 | 0.699  | 0.071  | 0.236  | 0.039 | 0.004 | 0.024  | 0.003  | 0.010  | 0.001  | 0.003 | 0.000 | 0.001 | 0.000 | 0.049  |
|       |         |        |       |        |        |        |       |       |        |        |        |        |       |       |       |       |        |
| 0.042 | 0.017   | 0.001  | 0.026 | 0.076  | 0.001  | 0.007  | 0.000 | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  |
| 0.206 | 0.131   | 0.031  | 0.161 | 0.275  | 0.027  | 0.084  | 0.013 | 0.001 | 0.008  | 0.001  | 0.003  | 0.000  | 0.001 | 0.000 | 0.001 | 0.000 | 0.017  |
| 0.773 | 0.603   | 0.494  | 0.424 | 0.393  | 0.376  | 0.358  | 0.344 | 0.332 | 0.329  | 0.322  | 0.331  | 0.355  | 0.379 | 0.413 | 0.433 | 0.452 | 0.345  |
|       |         |        |       |        |        |        |       |       |        |        |        |        |       |       |       |       |        |
| 2.200 | 1.610   | 1.927  | 0.238 | -0.024 | -0.134 | -0.279 | 0.145 | 0.151 | -0.222 | -0.315 | -0.265 | 0.113  | 0.424 | 0.822 | 1.082 | 1.178 | -0.046 |
| 6.062 | 4.540   | 11.278 | 0.383 | 0.191  | 0.344  | 0.458  | 2.083 | 2.061 | 0.949  | 0.415  | -0.023 | -0.011 | 0.319 | 1.241 | 2.332 | 2.622 | 0.033  |
| 0.022 | 0.00934 | 0.005  | 0.016 | 0.030  | 0.003  | 0.012  | 0.002 | 0.000 | 0.002  | 0.000  | 0.001  | 0.000  | 0.001 | 0.000 | 0.000 | 0.000 | 0.006  |
| 1.421 | 0.942   | 0.322  | 0.862 | 1.475  | 0.155  | 0.513  | 0.093 | 0.009 | 0.052  | 0.005  | 0.019  | 0.003  | 0.007 | 0.001 | 0.004 | 0.001 | 0.106  |
| 1.399 | 0.933   | 0.317  | 0.846 | 1.445  | 0.151  | 0.501  | 0.091 | 0.008 | 0.050  | 0.005  | 0.018  | 0.003  | 0.007 | 0.001 | 0.004 | 0.000 | 0.100  |
|       |         |        |       |        |        |        |       |       |        |        |        |        |       |       |       |       |        |
| 0.036 | 0.021   | 0.007  | 0.036 | 0.070  | 0.008  | 0.027  | 0.006 | 0.001 | 0.004  | 0.001  | 0.002  | 0.000  | 0.001 | 0.000 | 0.001 | 0.000 | 0.010  |
| 0.065 | 0.049   | 0.022  | 0.087 | 0.164  | 0.018  | 0.069  | 0.013 | 0.001 | 0.008  | 0.001  | 0.004  | 0.001  | 0.001 | 0.000 | 0.001 | 0.000 | 0.018  |
| 0.096 | 0.075   | 0.029  | 0.153 | 0.310  | 0.032  | 0.108  | 0.020 | 0.002 | 0.013  | 0.001  | 0.006  | 0.001  | 0.002 | 0.000 | 0.001 | 0.000 | 0.028  |
| 0.096 | 0.075   | 0.029  | 0.153 | 0.310  | 0.032  | 0.108  | 0.020 | 0.002 | 0.013  | 0.001  | 0.006  | 0.001  | 0.002 | 0.000 | 0.001 | 0.000 | 0.028  |
| 0.203 | 0.191   | 0.059  | 0.372 | 0.694  | 0.072  | 0.239  | 0.040 | 0.004 | 0.024  | 0.003  | 0.011  | 0.001  | 0.003 | 0.000 | 0.001 | 0.000 | 0.051  |
| 0.311 | 0.272   | 0.080  | 0.444 | 0.845  | 0.085  | 0.286  | 0.045 | 0.004 | 0.028  | 0.003  | 0.012  | 0.002  | 0.004 | 0.000 | 0.002 | 0.000 | 0.060  |
| 0.528 | 0.375   | 0.101  | 0.603 | 1.070  | 0.109  | 0.347  | 0.052 | 0.005 | 0.032  | 0.003  | 0.014  | 0.002  | 0.004 | 0.000 | 0.002 | 0.000 | 0.070  |
| 0.727 | 0.489   | 0.115  | 0.677 | 1.189  | 0.117  | 0.368  | 0.057 | 0.005 | 0.035  | 0.004  | 0.015  | 0.002  | 0.005 | 0.001 | 0.002 | 0.000 | 0.076  |
| 1.078 | 0.634   | 0.154  | 0.801 | 1.341  | 0.137  | 0.419  | 0.081 | 0.007 | 0.044  | 0.005  | 0.018  | 0.003  | 0.006 | 0.001 | 0.004 | 0.000 | 0.091  |

#### Rock Codes 401, 402, 403

#### NB203\_C BEO\_C TH02\_C LA203\_C CE203\_C PR203\_C ND203\_C SM203\_C EU203\_C GD203\_C TB203\_C DY203\_C H0203\_C ER203\_C TM203\_C YB203\_C LU203\_C Y203\_C

| Valid cases           | 398   | 398     | 398   | 398   | 398    | 398    | 398    | 398    | 398    | 398    | 398    | 398    | 398    | 398   | 398   | 398   | 398   | 398    |
|-----------------------|-------|---------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|--------|
| Mean                  | 0.263 | 0.215   | 0.063 | 0.378 | 0.698  | 0.071  | 0.236  | 0.038  | 0.004  | 0.024  | 0.003  | 0.010  | 0.001  | 0.003 | 0.000 | 0.001 | 0.000 | 0.049  |
|                       |       |         |       |       |        |        |        |        |        |        |        |        |        |       |       |       |       |        |
| Variance              | 0.038 | 0.015   | 0.001 | 0.026 | 0.075  | 0.001  | 0.007  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  |
| Std. Deviation        | 0.195 | 0.122   | 0.029 | 0.160 | 0.274  | 0.027  | 0.084  | 0.013  | 0.001  | 0.008  | 0.001  | 0.003  | 0.000  | 0.001 | 0.000 | 0.001 | 0.000 | 0.017  |
| Variation Coefficient | 0.740 | 0.568   | 0.458 | 0.424 | 0.393  | 0.375  | 0.355  | 0.332  | 0.320  | 0.322  | 0.322  | 0.331  | 0.355  | 0.379 | 0.413 | 0.433 | 0.452 | 0.342  |
|                       |       |         |       |       |        |        |        |        |        |        |        |        |        |       |       |       |       |        |
| Skew                  | 1.916 | 1.094   | 0.814 | 0.224 | -0.033 | -0.159 | -0.350 | -0.228 | -0.195 | -0.430 | -0.315 | -0.265 | 0.113  | 0.424 | 0.822 | 1.082 | 1.178 | -0.107 |
| Kurtosis              | 4.148 | 1.360   | 1.224 | 0.358 | 0.177  | 0.283  | 0.298  | 0.978  | 1.062  | 0.546  | 0.415  | -0.023 | -0.011 | 0.319 | 1.241 | 2.332 | 2.622 | -0.133 |
| Minimum               | 0.022 | 0.00934 | 0.005 | 0.016 | 0.030  | 0.003  | 0.012  | 0.002  | 0.000  | 0.002  | 0.000  | 0.001  | 0.000  | 0.001 | 0.000 | 0.000 | 0.000 | 0.006  |
| Maximum               | 1.246 | 0.670   | 0.190 | 0.862 | 1.458  | 0.147  | 0.476  | 0.077  | 0.007  | 0.043  | 0.005  | 0.019  | 0.003  | 0.007 | 0.001 | 0.004 | 0.001 | 0.096  |
| Range                 | 1.224 | 0.660   | 0.185 | 0.846 | 1.429  | 0.144  | 0.464  | 0.074  | 0.007  | 0.041  | 0.005  | 0.018  | 0.003  | 0.007 | 0.001 | 0.004 | 0.000 | 0.089  |
| Sum                   |       |         |       |       |        |        |        |        |        |        |        |        |        |       |       |       |       |        |
| 1st percentile        | 0.036 | 0.021   | 0.007 | 0.036 | 0.070  | 0.008  | 0.027  | 0.006  | 0.001  | 0.004  | 0.001  | 0.002  | 0.000  | 0.001 | 0.000 | 0.001 | 0.000 | 0.010  |
| 5th percentile        | 0.065 | 0.049   | 0.022 | 0.087 | 0.164  | 0.018  | 0.069  | 0.013  | 0.001  | 0.008  | 0.001  | 0.004  | 0.001  | 0.001 | 0.000 | 0.001 | 0.000 | 0.018  |
| 10th percentile       | 0.096 | 0.075   | 0.029 | 0.153 | 0.310  | 0.032  | 0.108  | 0.020  | 0.002  | 0.013  | 0.001  | 0.006  | 0.001  | 0.002 | 0.000 | 0.001 | 0.000 | 0.028  |
| 25th percentile       | 0.096 | 0.075   | 0.029 | 0.153 | 0.310  | 0.032  | 0.108  | 0.020  | 0.002  | 0.013  | 0.001  | 0.006  | 0.001  | 0.002 | 0.000 | 0.001 | 0.000 | 0.028  |
| Median                | 0.203 | 0.191   | 0.059 | 0.372 | 0.694  | 0.072  | 0.239  | 0.040  | 0.004  | 0.024  | 0.003  | 0.011  | 0.001  | 0.003 | 0.000 | 0.001 | 0.000 | 0.051  |
| 75th percentile       | 0.311 | 0.272   | 0.080 | 0.444 | 0.845  | 0.085  | 0.286  | 0.045  | 0.004  | 0.028  | 0.003  | 0.012  | 0.002  | 0.004 | 0.000 | 0.002 | 0.000 | 0.060  |
| 90th percentile       | 0.528 | 0.375   | 0.101 | 0.603 | 1.070  | 0.109  | 0.347  | 0.052  | 0.005  | 0.032  | 0.003  | 0.014  | 0.002  | 0.004 | 0.000 | 0.002 | 0.000 | 0.070  |
| 95th percentile       | 0.727 | 0.473   | 0.115 | 0.677 | 1.175  | 0.117  | 0.368  | 0.057  | 0.005  | 0.035  | 0.004  | 0.015  | 0.002  | 0.005 | 0.001 | 0.002 | 0.000 | 0.075  |
| 99th percentile       | 1.005 | 0.593   | 0.152 | 0.799 | 1.341  | 0.135  | 0.415  | 0.074  | 0.007  | 0.042  | 0.005  | 0.018  | 0.003  | 0.006 | 0.001 | 0.004 | 0.000 | 0.090  |

# APPENDIX F

VARIOGRAMS

#### Variogram LREO Downhole Two Tom

| Type      | Variance | Range |
|-----------|----------|-------|
| Nugget    | 0.075    | -     |
| Spherical | 0.235    | 8     |
| Spherical | 0.690    | 59    |



/// LREO\_C HOLE-ID AZI - DIP -
# Variogram ThO2 Downhole Two Tom Domain 4001

| Туре      | Variance | Range |
|-----------|----------|-------|
| Nugget    | 0.1      | -     |
| Spherical | 0.365    | 8     |
| Spherical | 0.535    | 22    |



// THO2\_C HOLE-ID AZI - DIP -

# Variogram LREO Domain 4002 Downhole

| Type      | Variance | Range |
|-----------|----------|-------|
| Nugget    | 0.02     | -     |
| Spherical | 0.367    | 30    |
| Spherical | 0.269    | 53    |



// LREO\_C HOLE-ID AZI - DIP -

# Variogram ThO2 Downhole Domain 4002

| Туре      | Variance | Range |
|-----------|----------|-------|
| Nugget    | 0.05     | -     |
| Spherical | 0.316    | 10    |
| Spherical | 0.634    | 42    |



// THO2\_C HOLE-ID AZI - DIP -

# Variogram LREO Two Tom Domain 4001

| Туре                               |           | Variance                  | 150/0             | 60/60           | 240/30                        |
|------------------------------------|-----------|---------------------------|-------------------|-----------------|-------------------------------|
| Nugget<br> Spherical<br> Spherical | <br> <br> | 0.075 <br>0.115 <br>0.810 | - <br>180 <br>193 | - <br>36 <br>48 | <br> <br> <br> <br> <br> <br> |



 // LREO\_C AZI 150 DIP 0
 // LREO\_C AZI 60 DIP 60
 // LREO\_C AZI 240 DIP 30

# Variogram ThO2 Two Tom Domain 4001



✓ THO2\_C AZI 30 DIP 0 // THO2\_C AZI 120 DIP 60 // THO2\_C AZI 300 DIP 30

# Variogram LREO Two Tom



// LREO\_C AZI 150 DIP 0 // LREO\_C AZI 60 DIP 60 // LREO\_C AZI 240 DIP 30

# Variogram ThO2 Two Tom

| Туре   Т  | /ariance | 150/0 | 60/60 | 240/30 |
|-----------|----------|-------|-------|--------|
| Nugget    | 0.082    | -     | -     |        |
| Spherical | 0.503    | 114   | 141   | 17     |
| Spherical | 0.415    | 125   | 147   | 200    |



// THO2\_C AZI 150 DIP 0 // THO2\_C AZI 60 DIP 60 // THO2\_C AZI 240 DIP 30

# Variogram HREOY Downhole Two Tom

| Type      | Variance | Range |
|-----------|----------|-------|
| Nugget    | 0.04     | -     |
| Spherical | 0.305    | 7     |
| Spherical | 0.655    | 53    |



HREOY\_C HOLE-ID AZI - DIP -

# Variogram HREOY Domain 4002 Downhole

| Туре      | Variance | Range |
|-----------|----------|-------|
| Nugget    | 0.03     | -     |
| Spherical | 0.146    | 11    |
| Spherical | 0.824    | 46    |



// HREOY\_C AZI - DIP - // HREOY\_C HOLE-ID AZI - DIP -

# Variogram HREOY Two Tom Domain 4001

| Туре      | Variance | 150/0 | 60/60 | 240/30 |
|-----------|----------|-------|-------|--------|
| Nugget    | 0.04     | -     | -     | -      |
| Spherical | 0.188    | 86    | 44    | 10     |
| Spherical | 0.772    | 199   | 60    | 108    |





# Variogram HREOY

| Туре      | Variance | 150/0 | 60/60 | 240/30 |
|-----------|----------|-------|-------|--------|
| Nugget    | 0.03     | -     | -     | -      |
| Spherical | 0.153    | 98    | 64    | 10     |
| Spherical | 0.817    | 105   | 71    | 45     |



// HREOY\_C AZI 150 DIP 0 // HREOY\_C AZI 60 DIP 60 // HREOY\_C AZI 240 DIP 30

# Variogram Nb2O5 Domain 4001 Two Tom

| Туре      | Variance | Range |
|-----------|----------|-------|
| Nugget    | 0.12     | -     |
| Spherical | 0.214    | 7     |
| Spherical | 0.666    | 35    |



NB2O3\_C HOLE-ID AZI - DIP -

# Variogram Nb2O5 Downhole Domain 4002

| Туре      | Variance | Range |
|-----------|----------|-------|
| Nugget    | 0.38     | -     |
| Spherical | 0.231    | 7     |
| Spherical | 0.389    | 100   |



NB2O3\_C HOLE-ID AZI - DIP -

# Variogram Nb2O5 Two Tom Domain 4001

| Туре      | Variance | 150/0 | 60/60 | 240/30 |
|-----------|----------|-------|-------|--------|
| Nugget    | 0.12     | -     | -     | -      |
| Spherical | 0.550    | 105   | 40    | 14     |
| Spherical | 0.330    | 109   | 118   | 34     |



│ NB2O3\_C AZI 150 DIP 0 │ NB2O3\_C AZI 60 DIP 60 │ NB2O3\_C AZI 240 DIP 30

# Variogram NbO5 Two Tom

| Туре      |  | Variance | 150/0 | 60/60 | 240/30 |
|-----------|--|----------|-------|-------|--------|
| Nugget    |  | 0.164    | -     | -     | -      |
| Spherical |  | 0.333    | 129   | 80    | 15     |
| Spherical |  | 0.503    | 144   | 112   | 172    |



│ NB2O3\_C AZI 150 DIP 0 │ NB2O3\_C AZI 60 DIP 60 │ NB2O3\_C AZI 240 DIP 30

# Variogram Beo Two Tom Domain 4001



# Variogram BeO Downhole Domain 4002

| Type      | Variance | Range |
|-----------|----------|-------|
| Nugget    | 0.09     | -     |
| Spherical | 0.213    | 10    |
| Spherical | 0.355    | 28    |
| Spherical | 0.342    | 65    |



// BEO\_C HOLE-ID AZI - DIP -

# Variogram BeO Two Tom

| Туре      | Variance | 150/0 | 60/60 | 240/30 |
|-----------|----------|-------|-------|--------|
| Nugget    | 0.1      | -     | -     | -      |
| Spherical | 0.328    | 117   | 23    | 11     |
| Spherical | 0.572    | 121   | 36    | 87     |



 MBEO\_C AZI 150 DIP 0
 BEO\_C AZI 60 DIP 60
 BEO\_C AZI 240 DIP 30

# Variogram BeO Two Tom

| Туре      | Variance | 150/0 | 60/60 | 240/30 |
|-----------|----------|-------|-------|--------|
| Nugget    | 0.05     | -     | -     | -      |
| Spherical | 0.386    | 115   | 21    | 11     |
| Spherical | 0.564    | 124   | 39    | 98     |



